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Precast concrete double tees are designed to carry verti-
cal load by bending, but they are sometimes also sub-
jected to torsion. This twisting may occur intention-

ally, such as when the bearing supports at the two ends of 
the members are not parallel, a practice commonly used to 
facilitate drainage of a parking structure fl oor. 

In this case, the stresses induced by the torsion are con-
trolled by the magnitude of the imposed twist angle, which is 
defi ned by the difference between the slopes of the two sup-
ports. In other cases, the member may twist unintentionally 
by uneven lifting from the casting bed, storage conditions, 

Prestressed concrete double tees are sometimes 
set on non-parallel supports to facilitate drainage; 
this practice induces twisting in the members. 
If the twist angle is large enough, cracks may 
occur in the fl anges adjacent to the web-fl ange 
junction. This paper identifi es the important modes 
of deformation and presents an analysis of the 
stresses and deformations caused by twisting. Local 
distortions of the cross section near the member 
ends are shown to play a pivotal role in bending 
and cracking of the fl anges of double tees. A new 
theory of torsion that includes those deformations 
is developed, and a parametric study is carried out 
to show the effect of variations in the dimensions 
of the member. Finally, based on the new theory, 
the paper presents several graphs that facilitate the 
computation of the twist angle that causes cracking 
in a double tee of common dimensions.
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transportation on a flexible trailer, or other causes. Excessive 
twisting has been found to cause cracking in the flange. 

Such cracking is unlikely to jeopardize the structural in-
tegrity of the member because the reinforcement provides 
the strength necessary to resist the design loads and becomes 
active primarily after the concrete cracks. However, crack-
ing is generally undesirable from a serviceability standpoint, 
and the cracks may need to be sealed if the member remains 
untopped.

In the past, the prediction of cracking due to warping has 
largely been based on experience rather than analysis. This 
paper presents an analytical method that relates the peak 
flange stress to the twist angle of the member. Based on this 
approach, several graphs are developed that simplify imple-
mentation of that relationship. Note that selection of the max-
imum stress that should be allowed in practice or the accept-
able extent of cracking are beyond the scope of the study.

Consider the case of a double tee bearing on non-parallel 
supports, with all four stems in contact with their supports, as 
shown in Fig. 1a. The total load can be broken down into two 
load cases, which may be superimposed. The first consists of 
a uniform gravity load applied to the member, which is sup-
ported on four hypothetical supports at the same level (see 
Fig. 1b). This load case induces bending but no torsion. 

The second load case consists of removing one of the four 
supports and applying at that point a concentrated downward 
load that results in a deflection equal to the lack of parallel-
ism in the real supports (see Fig. 1c). This second load case 
induces torsion and is the one of interest in this investigation. 

At first glance, the problem appears to be a relatively 
straightforward case of St. Venant’s torsion; that is, a single, 
prismatic element subjected to a constant torque with unre-
strained warping. It is argued here, however, that the torque is 
applied at the ends of the member by means of vertical forces 
on the stems and that the distribution of stresses near the ends 
differs significantly from that predicted by St. Venant’s tor-
sion theory. 

These end stresses are the primary cause of flange cracking. 
A method of analysis that incorporates both the St. Venant 
twisting of the member and the deformations of the flange is 

needed if the flange stresses near the end of the member are 
to be predicted. 

PREVIOUS RESEARCH
Mack et al.1 published a comprehensive state-of-the-

art paper on the subject of warping caused by non-parallel 
supports. That paper treated the problem as one of pure St. 
Venant torsion, which induces only shear stresses, and de-
veloped an elegant numerical method for finding the exact 
torsional properties of the cross section by using Prandtl’s 
soap-film analogy.2 

From these properties, the shear stresses due to the applied 
torque and the highest shear stress at the web-flange junction 
were computed. Then, from this peak shear stress, the maxi-
mum normal stress was obtained for a variety of double tees 
subjected to a range of different twist angles.

A previous PCI-sponsored study conducted by The Con-
sulting Engineers Group, Inc. (CEG)3 addressed a wide range 
of issues related to the durability of parking structures, in-
cluding warping of double tees. CEG conducted several 
three-dimensional finite element analyses (FEAs) of a double 
tee using solid (“brick”) elements, which led to calculations 
of stresses in the flanges of the tees.

The results of that study include the distribution of princi-
pal stresses at one end of a member. Those stresses reach a 
maximum at the end of the member; that is, at the top of the 
flange at the web-flange junction at one web and at the bot-
tom of the flange at the web-flange junction at the other web, 
as indicated in Fig. 2. 

Stresses diminish with distance from the ends of the mem-
ber. CEG identified these stresses as flange bending stresses 
rather than torsional shear stresses. A plot of maximum stress 
as a function of the “degree of warp” (i.e., the deflection of 
the one free support relative to the plane defined by the other 
three) was provided. However, the results of the linearly elastic 
FEA must have contained some scatter, because the predicted 
stresses for the 60 ft (18.3 m) double tee were represented by 
a bilinear curve that did not pass through the origin.

(a) Total load (b) Uniform load

+=

(c) Support forces

Fig. 1. Support reactions on a double tee resting on non-parallel supports. 
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In this paper, the notation 10DT24 is taken to mean a 10 ft 
(3.05 m) wide double tee with a clear web height below the 
flange of 24 in. (610 mm). The notation “+2” indicates a 2 in. 
(51 mm) thick flange, and “_60” means a 60 ft (18.3 m) span. 
Thus, a 12DT30+2_62 section has a 12 ft (3.66 m) member 
width, a 30 in. (762 mm) web depth below the flange, a 2 in. 
(51 mm) flange thickness, and a 62 ft (18.90 m) span. 

This nomenclature follows the example of Mack et al.1 but 
differs from that used by many practitioners. It is convenient 
here because it permits an easy definition of sections with 
the same stem geometry and fabricated in the same form, but 
with different flange thicknesses. 

CEG also conducted field tests on a 47.0 and 60.5 ft (14.3 
and 18.4 m) long pretopped 10DT24+4 section. Each member 
had, at each end, a 2 in. deep by 1 ft 11 in. wide (51 × 533 mm) 
recess in the flange spanning the entire 10 ft (3.05 m) width 
to accommodate a cast-in-place pour strip. 

A longitudinal crack started at each web-flange junction at 
one end of the member and propagated toward midspan. One 
crack initiated in the top and one in the bottom of the flange, 
as shown in Fig. 3. In most cases, the crack turned inward 
from the web-flange junction toward the member centerline 
as it propagated away from the member end. With the excep-
tion of the fact that cracking occurred at only one end of the 
member, which may have been due to slight differences in 

the boundary conditions for the loaded and simply supported 
ends of the member, the observed damage patterns were con-
sistent with the results of the FEA.

The crack patterns observed by CEG suggest that the be-
havior at the ends of the specimen is dominated by the flange 
bending mechanism observed in their finite element model of 
a double tee. However, no such stresses are predicted by con-
ventional models of torsion. The observed cracking and the 
results of the FEA suggest also that the flexural bending mech-
anism developed at the member ends gives way to a conven-
tional torsional mechanism toward midspan of the member. 

CLASSICAL TORSION THEORY
As a first step toward developing a model for predicting 

flange bending stresses, classical torsion theory2 is reviewed 
and the need for an extension to the theory is established.

Closed sections (i.e., tubes) and solid sections can be ana-
lyzed for torsion using the simplest possible approach, origi-
nally developed by Barre de St. Venant.4 For these sections, 
deformations are assumed to be caused by shear stresses alone. 
(This assumption is strictly true only in circular sections, but 
it causes very little error in most closed or solid sections.)

Points in the member do not displace longitudinally, so a 
cross section that is plane in the unstressed member remains 
plane under load. In other words, the cross section does not 
warp. In this case, the torque, T(z), and the twist angle, φ(z), 
at any longitudinal location, z, are related by:

 T(z) = GJφ’(z) (1)

where
T  = torque
G = shear modulus
J =  St. Venant torsion constant, defined by member 

geometry
φ = twist angle at location z
z = longitudinal coordinate
The prime (’) indicates differentiation with respect to z. In 

Eqs. (1) to (45), which describe the theory, the units are not 
restricted to any single system; they need only be consistent 
with each other.

In open sections, the assumption that plane sections re-
main plane can no longer be made because some longitudi-
nal displacement occurs. A cross section that is plane in the 
unstressed member becomes nonplanar under load, and the 
cross section warps. 

Accounting for the two different types of deformation (shear 
strains and longitudinal deformation) leads to two compo-
nents of torque: one due to St. Venant shear stresses and one 
due to restraint-of-warping stresses. St. Venant shear stresses 
circulate around the individual segments (such as webs and 
flange) of the cross section but provide no net shear force.

The restraint-of-warping stresses lead to equal and oppo-
site shear forces in the webs of members such as double tees. 
The couple formed by these web shear forces multiplied by 
the web spacing forms the component of torque associated 
with restraint of warping. 

The total torque is the sum of these two components, and is 
related to the twist angle, φ(z), by:2

Top View  Bottom View  

Fig. 2. Locations of maximum stress due to twisting.

Fig. 3. Cracks in CEG double tee (from Mack et al.1).
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 T(z) = GJφ’(z) – ECwφ’’’(z) (2)

where
E = Young’s modulus of elasticity
Cw =  restraint-of-warping torsion constant, defined by 

member geometry
Eq. (2) is used widely to analyze open sections such as 

wide-flange steel sections, and might be expected to be suit-
able for double tees as well. However, it is shown below that 
an inconsistency occurs if the end torque is applied by a cou-
ple that consists of concentrated loads such as the support 
reactions. 

Application of Classical Torsion Theory to Double Tees

In a member such as a uniformly loaded double tee, the 
torque is applied only at the member ends; thus, the total 
torque is constant along the member length. At the member 
ends, warping is unrestrained, so no longitudinal stresses can 
exist and the bi-moment, B, is zero. In a double tee, the bi-
moment is given by the moment in each web multiplied by 
the distance between webs, and it is defined by:

 B(z) = ECwφ”(z) (3)

where E, Cw, and φ are defined as in Eqs. (1) and (2). 
The differential of the bi-moment with respect to z gives 

the component of torque in the member due to restraint of 
warping. Solving Eq. (2) for the case of constant torque and 
φ” = 0 at the ends shows that the restraint-of-warping torque 
is zero all along the member.

If the component of torque due to restraint of warping is 
zero along the entire length of the element, it follows that 
the St. Venant component of the torque is equal to the total 
torque and, therefore, is constant along the member. How- 
ever, the end plane of the member is a free surface, so the 
shear stresses acting on it must be zero. Since these shear 
stresses define the St. Venant torque, the St. Venant torque 
also is zero at the member ends. If the St. Venant torque is 
constant along the length of the member and is zero at the 
ends, it must be zero everywhere else.

Therein lies the inconsistency in applying classical tor-
sion theory to describe the behavior of a double tee loaded as 
shown in Fig. 1c. The torque components due to St. Venant’s 
torsion and due to restraint-of-warping torsion must both be 
zero everywhere, yet the member is being twisted. Clearly, 
classical torsion theory, even allowing for warping of the 
cross section, does not describe fully the response of an open 
section such as a double tee. 

In any member subjected to end forces alone, the distribu-
tion of stresses at the end may differ from that in the interior 
of the member even though the two have the same force or 
moment resultant. Examples are given by the shear stress dis-
tribution at the end of a beam that rests on a simple support 
and is subjected to vertical load, or by the case considered 
here of stresses due to unequal vertical forces acting on the 
stems of a double tee. 

The total stress state at the end of a member may be thought 
of as the stress state in the interior of the member plus an ad-
ditional set of local end stresses. St. Venant’s principle (quite 
separate from his work on torsion) states that these local end 
stresses attenuate to negligible values at a distance from the 
end that is approximately equal to one member depth. 

In many applications, these end effects are ignored, if for 
no other reason than the fact that they are difficult to calcu-
late. In metal members, for example, this assumption may 
be justified because the cross-sectional dimensions are often 
much smaller than the length (in which case the end effects 
have little effect on the total twist angle of the member) and 
because any adverse local stresses that they may introduce 
are absorbed by small inelastic deformations. 

However, the damage patterns in the double tees tested by 
CEG and the stress fields observed in the FEA that CEG per-
formed suggest that the local end stresses cannot be neglected 
in the double tee problem; it is these stresses, rather than the 
St. Venant torsional shear stresses in the body of the member, 
that are the cause of the flange cracking. Thus, a modified 
model for torsion is needed in order to establish the magni-
tude of the local stresses.

DEVELOPMENT OF A  
NEW TORSION MODEL

The inconsistency in the classical torsion model described 
above can only be resolved by introducing a third source of 
deformation, in addition to the St. Venant shear deforma-
tions and the longitudinal (warping) deformations included 
in the classical model of Eq. (2). The cracking that occurred 
in the double tees tested by CEG suggests that this addi-
tional and previously unaccounted for deformation mode is 
associated with flange bending. Thus, it is proposed that the 
torsional behavior of a double tee be described by warping 
of the cross section and by two sources of twisting deforma-
tion (see Fig. 4).

The first of these twisting modes is a rigid body rotation 
of the cross section (see Fig. 4a), which is the deformation 

 

d  
r   

(a) Rigid body rotation    (b) Cross-section distortion  

φ φ

∆

Fig. 4. Components of twist 
angle: (a) Rigid body rotation; 
(b) Cross-section distortion.
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field that underlies St. Venant’s torsion theory. The second is 
distortion of the cross section caused by transverse bending 
of the flange, which leads to vertical displacement of one web 
with respect to the other (see Fig. 4b). 

It is expected that this second displacement field will be 
greatest near the ends of the member, where the torque is 
applied in a manner that is different from that envisaged in 
classical theory, and that it will diminish toward midspan. 
Additionally, the double tee webs remain parallel to their 
unstressed orientation, and all deformation occurs through 
flange bending, rather than web bending. This behavior may 
be explained as follows. 

No horizontal forces act on the webs, so they experience no 
out-of-plane bending. Symmetry then requires that the webs 
remain parallel to each other. If they both rotate through the 
same angle, that rotation forms the rigid body rotation asso-
ciated with the St. Venant torsion and is accounted for sepa-
rately. Thus, for the component of twisting associated with 
the cross-section distortion, the webs remain vertical.

The total torsional deformation of a double tee may be de-
fined as the sum of the two components shown in Fig. 4:

 φt(z) = φr(z) + φd(z) (4)

where
φt = total twist angle
φr =  twist angle due to rigid body rotation of cross 

section
φd = twist angle due to cross-section distortion
The total torque, Tt, consists of a St. Venant component, TSV, 

and a restraint-of-warping component, TRW:

 Tt(z) = TSV (z) + TRW(z) = GJφr’(z) – ECwφt’’’(z) (5)

where the St. Venant torque depends on the φr component of 
the twist angle alone, because this is the only deformation 
that leads to torsional shear stresses.

By contrast, restraint-of-warping torque is associated with 
in-plane bending deformation of the webs, which is related 

through geometry to the total twist angle. Combining Eqs. (4) 
and (5) leads to:

 Tt(z) = [GJφr’(z) – ECwφr’’’(z)] – ECwφd’’’(z) (6)

Eq. (6) is identical to the classical torsion model [Eq. (2)], 
with the exception that an additional term accounts for torque 
due to cross-section distortion, which is necessary to model 
the response near the member ends.

To solve the torsion problem defined by Eq. (6), an ad-
ditional equilibrium equation is required to eliminate the 
additional unknown, φd. It is given by considering moment 
equilibrium about the longitudinal axis of a short section of 
the web, as shown in Fig. 5. The difference between the St. 
Venant torques at the two ends of the web element is equili-
brated by the moment from the flange bending:

 mf (z)dz + dTSVw(z) = 0 (7a)

or

 mf (z) + 
d
dz

 TSVw(z) = 0 (7b)

where
mf  =  transverse flange moment per unit length along 

member
TSVw  = St. Venant torque in one web
Assuming the flange responds as a plate subjected to bend-

ing about a single axis, the flange moment is defined as: 

 mf (z) = 
6Df ∆(z)

s2
 = 

6Df

s
 φd (z) (8)

where
∆ = vertical offset of the two webs (see Fig. 4b)
s = center-to-center web spacing
Df =  bending stiffness of flange per unit length of  

double tee 

= 
Etf

3

12(1 − νc
2)

 

tf = flange thickness

TSVw+dTSVw

dz

TSVw

A

A

dzm f

Section A-A ElevationFig. 5. Equilibrium  
of web segment.
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νc = Poisson’s ratio for concrete

The St. Venant web torque, TSVw, is given by: 

 TSVw(z) = GJwφr’(z) (9)

where Jw is the St. Venant torsion constant for one web. 
Substituting Eqs. (8) and (9) into Eq. (7b) yields:

 φd (z) = 
−sGJw

6Df

 φr”(z) (10)

Eq. (10) provides the additional information needed to 
eliminate the unknown, φd, from Eq. (6).

Substituting Eq. (10) into Eq. (6) and setting the derivative 
of the total torque equal to zero, since the torque is constant 
along the length of the member, results in: 

 GJφr”(z) – ECwφr
iv(z) + GCdφr

vi(z) = 0  (11)

where

 Cd = 
sJwECw

6Df

  (12)

The quantity Cd may be thought of as a torsional member 
property that is associated with distortion of the cross sec-
tion. It has units of length to the eighth power. Note that the 
variable Df contains Young’s modulus of elasticity, E, so the 
material property constants on the right hand side of Eq. (12) 
cancel, leaving the units of Cd in terms of length alone. 

To facilitate its solution, Eq. (11) is rearranged as follows:

 φr
vi(z) – 2ν2φr

iv(z) + 2ν2λ2φr”(z) = 0 (13)

where

 λ2 = GJ
ECw

 (14)

 ν2 = 
3Df

sGJw

  (15)

Note that both λ and ν have units of length–1.
Six boundary conditions are needed to solve the sixth order 

differential equation defined by Eq. (13). In most cases, the 
double tee problem is anti-symmetric. If the origin is taken at 
midspan of the double tee, the six boundary conditions are: 

 φt(±L/2) = ±φ0/2 (known twist angle at each end) (16a)

 φr’(±L/2) = 0 (no St. Venant torque at each end)  (16b)

 φt”(±L/2) = 0 (no bi-moment at each end) (16c)

where φ0 is the total torsional rotation of one end of the mem-
ber relative to the other. 

SOLUTION STRATEGIES
The problem defined by Eqs. (13) to (16) may be solved 

analytically (i.e., in closed form) or by using the finite dif-
ference (FD) method. Both methods were used here to verify 
that the solutions are correct. The analytical solution is pre-
sented first, followed by the FD solution.

Analytical Solution

The torsion problem defined by Eqs. (13) to (16) may be 
solved using traditional analytical methods. A report by the 
authors5 provides a detailed discussion of the analytical solu-
tion process; only the primary results are provided here. 

At the member end (z = L /2), the rotations φr, φd, and φt 
are given by:

 φr 
L
2

 = 
φ0 /2

1 + 1/ct

 (17a)

 φd 
L
2

 = 
φ0 /2

1 + ct

 = 
φr(L/2)

ct

 (17b)

 φt 
L
2

 = φ0 /2 (17c)

where ct is a dimensionless parameter defined as:

 ct = 
cη

ρ
 (18)

 cη = 

η1L

2

tanh 
η1L

2

 − 

η2L

2

tanh 
η2L

2

 (19)

 η1,2 = ν 1 ± ρ (20)

 ρ2 = 1 − 2λ2

ν2
 (21)

Eqs. (17a) to (17c) show that ct is the critical parameter that 
controls the behavior of the system. Its value depends on the 
two dimensionless variables λL and νL, where λ2 is the ratio 
between the St. Venant and restraint-of-warping torsional 
stiffnesses [Eq. (14)], and ν2 defines the bending stiffness of 
the flange relative to the St. Venant torsional stiffness of the 
web [Eq. (15)]. All the other variables, such as ρ and η, are 
functions of the dimensionless variables λL and νL. 

For physical reasons [i.e., Eq. (17)], ct must always be real. 
However, ρ [Eq. (21)] may be real or imaginary. If ρ is real 
(typically in a thick-flanged member), then η1 and η2 are also 
real, and Eqs. (18) and (19) can be evaluated directly. If ρ is 
imaginary, then cη must also be imaginary, and Eqs. (18) and 
(19) cannot be computed using a conventional calculator. For 
the case of imaginary ρ and cη values, the value of ct [Eq. 
(18)] may be computed without the use of complex numbers 
as follows:

 ct = 
cη

ρ
 = 2

µ
 

wsinh(2u) - usin(2w)

cosh(2u) - cos(2w)
  (22)

where

 µ = ρ/i = ||ρ|| (23a)

 i = −1 (23b)

 r = 
νL

2
 
4 4 + µ2  (23c)
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 θ = 
1
2

 arctan(µ) (23d)

 u = rcosθ (23e)

 w = rsinθ (23f)

Fig. 6 shows ct as a function of λL for different νL values. 
Because the calculation of ct is moderately complicated, and 
in some cases involves complex numbers, developing a sim-
pler approximation is desirable. The variations of ct with λL 
and νL shown in Fig. 6 suggest that a linear approximation 
may be possible. The best-fit linear function of λL and νL was 
found to be:

 ct ≈ (0.7147 − 0.0068λL)νL − (0.9062 + 0.1005λL)  (24)

In Fig. 6, the exact values of ct are shown as symbols with-
out lines and labeled νL, and the approximations are shown 
as straight lines without symbols and labeled νLapp. The fit 
appears good, and the mean error is 0.5 percent.

Eq. (17b) shows that a value of ct >> 1.0 indicates that only 
a small proportion of the total end twist angle is attributable 
to cross-section distortion, and ct = 0 implies that the entire 
twist angle is due to distortion. Fig. 6 shows that ct is much 
more sensitive to νL than to λL. 

This finding can be explained physically by the fact that a 
small νL value is associated with thick webs, a thin flange, 
and a short member, in which case distortion of the cross sec-
tion occurs relatively easily. By contrast, a large λL occurs 
when the St. Venant torsion constant is much larger than the 
restraint-of-warping constant, Cw, which typically occurs in 
long members, or those with short webs and thick flanges. 

The relationship between these characteristics, and thus λL, 
and flange bending is weaker.

Finite Difference Solution

Development of the closed-form solutions requires con-
siderable algebraic manipulation and gives rise to the pos-
sibility of error, so the problem defined by Eqs. (13) to (16) 
was solved also using the FD method in order to verify the 
closed-form results. 

To develop the FD solution, the variable φr, which in  
Eq. (13) is a continuous function of z, is discretized along 
the length of the member. The variable (φr)j is introduced to 
represent the value of φr at node j, which is located along the 
length of the member. Solution of the discretized problem 
requires calculation of (φr)j at a total of n nodes.

The equilibrium requirement defined by Eq. (13) must be 
satisfied at each node:

 (φr
vi)j – 2ν2(φr

iv)j + 2ν2λ2(φr”)j = 0 (25)

The derivatives of φr that appear in Eq. (25) are defined 
using the centered finite divided difference relationship, for 
example:

 (φr”)j ≈ 
1
h2

 (φr)j+1 – 2(φr)j + (φr)j−1  (26)

where h is the distance between adjacent nodes.
The centered finite difference relationship is more accurate 

than a forward or backward finite divided difference, but ap-
plying this relationship over the entire length of the member 
requires the introduction of extra nodes located outside the 
boundaries of the original domain. For example, to compute 
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the second derivative at the first node, j = 0, in the original 
domain requires the addition of node j = −1 so that (φr)–1 can 
be used in Eq. (26). The addition of extra nodes could have 
been avoided by using forward and backward divided differ-
ence relationships at the boundaries, but that approach was 
not used here.

Use of the centered finite divided difference relationships 
to define the derivatives in Eq. (13) results in a system of 
n + 6 equations that must be solved for the n + 6 unknown 
values of (φr)j, where the additional six unknown values of 
(φr)j result from the use of nodes outside the domain boundar-
ies and the additional six equations come from imposing the 
previously specified boundary conditions. The equations are 
expressed as:

 AΦ = y (27)

where A is a banded matrix of coefficients, Φ is the vector of 
unknown values of (φr)j, and y is a vector that contains mostly 
zeros, but also the applied twist angle.

The finite difference problem was solved using MATLAB.6 
Meshes with up to 769 equally spaced nodes were used to 
verify convergence of the solution. Although finer meshes re-
duced the truncation error in the finite difference approxima-
tion, they also led to larger round-off errors as the matrix A 
became increasingly ill-conditioned. These round-off errors 
were manifested by differences between the rotations at each 
end of the double tee, which should be equal and opposite, 
but in practice differed by increasingly large amounts as the 
mesh was refined.

The compromise that was finally selected was to use 289 
nodes along the member. This choice led to a difference be-
tween the end rotations of less than 0.1 percent, and also led 
to a mesh of approximately the same size as that used for the 
FEA (to be described later).

Fig. 7 compares the analytical (solid lines) and finite dif-
ference (dashed lines) solutions for φr(z) and φd(z), using the 
three double tees whose geometric properties are defined in 
Table 1. In each case, only half the span is shown because the 
response is anti-symmetric.

Fig. 7 also shows the results of FEAs (symbols but no line) 
that are discussed later. The data are normalized by dividing 
the individual twist angle components by the total twist angle 
of one end relative to the other. The analytical and finite dif-
ference solutions are virtually indistinguishable, suggesting 
that the analytical solution to Eq. (13) is correct.

THE TORSIONAL RESPONSE  
OF DOUBLE TEES

The analytical solution provides a basis for computing two 
quantities of interest to the engineer: the flange bending mo-
ment and the true torsional stiffness of a double tee. These 
topics are discussed in the following sections.

Flange Bending Moment

The distribution of the flange bending moment along the 
length of the member is of particular interest, as it is this mo-
ment that causes high tensile stresses at the web-flange inter-

face and cracking of the double tee. The exact distribution 
of flange bending moment along the member depends on the 
section properties, but several general observations can be 
made that help explain the nature of the behavior. 

Using Eqs. (8) and (17b), the flange moment at the end of 
the member (where it is maximum) is: 

 mf,max = 
6Df

s
 φd = 

6Df

s
 

φ0/2

1 + ct

 (28)

Because the flange moment is directly proportional to the 
distortion twist angle, φd, the distribution of φd along the 
member length is considered here as a proxy for the flange 
moment. Fig. 7 shows the distribution of φr and φd as func-
tions of z/L, the distance from midspan normalized with re-
spect to the total span length, for three 10DT24 cases. In each 
case, only half of the member is shown, since the response is 
symmetric.

Figs. 7a to 7c are arranged in decreasing order of the ratio 
of out-of-plane flange stiffness to in-plane web stiffness. 
For the 4 in. (100 mm) thick flange and 60 ft (18.3 m) span 
(Fig. 7a), φd is significant only near the ends of the member, 
where z/L = 0.5. This is so because the flange is relatively 
stiff in bending and rapidly suppresses any distortion of the 
cross section at locations distant from the support. Over 
about the central 80 percent of the member, the behavior is 
essentially pure St. Venant torsion.

By contrast, Fig. 7b shows that the 2 in. (51 mm) flange is 
much less stiff in transverse bending, so the cross-section dis-
tortions do not die out so rapidly. (In this case, the one mem-
ber depth suggested by St. Venant for attenuation of local end 
effects significantly underestimates the real value.) 

For the 10DT24 with a 2 in. (51 mm) flange spanning 10 ft  
(3.1 m), shown in Fig. 7c, the flange is very flexible com-
pared with the webs, so the twisting is strongly dominated 
by the cross-section deformation component, φd. The webs 
remain essentially straight and undergo rigid body motions, 
whereas the flange warps into a hyperbolic paraboloidal 
shape. The “end effects” exist throughout the member, and 
not even at midspan do the stresses reduce to the St. Venant 
shear stresses alone.

Fig. 8 shows the corresponding distributions of torque com-
ponents along the member, normalized with respect to the 
total applied torque. For clarity, results are shown from the 
analytical solution alone. As with Fig. 7, the FD values are 
essentially identical. In all cases, the torque at the member 
end is carried by the restraint-of-warping component alone, 
because the St. Venant torsional shear stresses, and thus the 
St. Venant torque, are zero there. (The explanation for the 

Table 1. Properties of double tees used in analyses.

Double tee  
designation

Span 
(ft)

bf 
(in.)

tf 
(in.)

s 
(in.)

hw 
clear 
(in.)

tw 
top 
(in.)

tw 
bot 
(in.)

10DT24+4_60 60 120 4 60 24 8* 5*

10DT24+2_60 60 120 2 60 24 8* 5*

10DT24+2_10 10 120 2 60 24 8* 5*
* 6.5 in. used in comparisons with FEAs. 
Note: 1 in. = 25.4 mm; 1 ft = 0.305 m.
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inconsistency described previously is that φt” is indeed zero 
at the member end, but the individual components φr” and 
φd” are not.)

Also, the restraint-of-warping torque, TRW, diminishes at sec-
tions away from the end, but changes sign so that, at midspan, 
both components of torque exist but have opposite signs. Be-
cause the two components of torque have different signs, the 
St. Venant component is larger than the total applied torque. 

Calculations of shear stress that are based on the presence 
of St. Venant torque alone will result in low estimates of the 
true shear stress. In Fig. 8a, the restraint-of-warping torque 

has almost disappeared at midspan, but in Figs. 8b and 8c it 
never disappears, but rather provides a substantial contribu-
tion over the whole length.

The behavior is similar but not identical to that of a beam-
on-elastic-foundation7 in which the web of the double tee 
may be thought of as the beam and the flange as the elastic 
foundation. The local distortion of the cross section at the 
member end involves significant bending of the “beam” near 
the loading point (i.e., the support of the double tee), which 
disappears as a result of the continuously distributed forces 
imposed on it by the “foundation.”

It is interesting to note that, at least 
in the case of the long, thick-flanged 
member shown in Fig. 8a, the flange 
bending moment changes sign and 
oscillates, thereby mimicking the dis-
tribution of the foundation forces in 
a typical beam-on-elastic-foundation 
system. The oscillations have little 
significance in practice because they 
are small and occur far away from the 
point of maximum flange moment.

Torsional Stiffness of Double Tees

The flange bending moment and 
stress are of paramount interest in eval-
uating the potential for cracking. There 
may be situations, however, in which 
the effect of cross-section distortion on 
torsional stiffness also is of interest. 

Most structural analysis software 
(e.g., SAP20008) models the torsional 
stiffness of a component using the as-
sumption of pure St. Venant torsion.
This may be unconservative if cross-
section distortion is significant. Here, 
two approaches are proposed for in-
cluding the additional torsional flex-
ibility resulting from cross-section dis-
tortion in a structural analysis. 

The total torque on the member can 
be computed using Eq. (5) in terms of 
the rotation angles φr(z) and φt(z). The 
resulting relationship between the total 
twist angle and the total torque is:

 φ0 = 
TtL

GJ
 1 + 

1
ct

 (29)

This may be compared with the twist 
angle, φ0,SV, that arises from the use of 
the St. Venant model alone:

 φ0,SV = 
TtL

GJ
 (30)

Thus, for a given torque, the addi-
tional twist angle due to flange bend-
ing is:

 φ0,add = φ0 − φ0,SV = 
1
ct

 
TtL

GJ
 (31)
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Fig. 7. Normalized φ versus z/L for three double tees: (a) 10DT24+4_60,  
(b) 10DT24+2_60, and (c) 10DT24+2_10.
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This additional twist angle may be thought of as being sup-
plied by a torsional spring, in series with the St. Venant model 
of the member. Its stiffness is:

 Kθ,end = 
Tt

φ0,add

 = ct 
GJ

L
 (32)

The additional flexibility, defined by the inverse of Kθ,end, 
can be evaluated approximately in extreme cases, such as 
for very long or very short members, to verify that Eq. (32) 
displays the appropriate asymptotic behavior. The critical di-
mensionless variable is ct.

Eqs. (29) and (32) suggest that two 
approaches are possible for modeling 
the torsional stiffness of an element 
that exhibits cross-sectional distortion. 
One approach is to use an effective tor-
sional constant, GJeff, for the element, 
defined by:

 GJeff = GJ 
ct

1 + ct

 (33)

A second approach is to add a ro-
tational spring with stiffness Kθ,end, as 
defined by Eq. (32), at one end of the 
member. 

VERIFICATION OF MODEL 
USING FEA

The fact that the closed form and fi-
nite difference solutions to the problem 
give essentially identical results sug-
gests that those solutions are both cor-
rect. However, to be useful in practice, 
the analytical model represented by Eq. 
(13) and its underlying assumptions 
must be shown to represent adequately 
the behavior of the real structure.

The principal assumption used is that 
the total twist angle can be modeled by 
the two terms φr and φd, and that they 
can be computed using Eqs. (4) to (10). 
This question was studied by conduct-
ing a series of finite element analyses 
and comparing the results with those of 
the analytical model.

An FE model of a 10DT24 section 
was created in SAP20008 using shell 
elements. Shell elements do not have 
an explicit representation of thickness, 
so elements were placed at the cen-
terlines of the flange and webs of the 
double tee. Thus, the geometry of the 
elements did not have to be modified to 
simulate the web-flange intersection.

Shell elements were chosen because 
they represent the primary mecha-
nisms that determine the response of 
the structure, but have less computa-
tional cost than solid elements. Further 

analysis using solid elements to simulate better the finite 
web-flange intersection region and the tapered webs is pos-
sible but is beyond the scope of this study.

The shell elements were defined as having both membrane 
and bending stiffness. Analyses were conducted using both a 
thick-plate formulation, in which out-of-plane shear defor-
mation is simulated, and a thin-plate formulation, in which 
it is neglected. The results of these two analyses were almost 
identical with the exception of the stress field at the very ends 

Fig. 8. Torque components versus span for three double tees: (a) 10DT24+4_60 
(analytical model), (b) 10DT24+2_60 (analytical model), and (c) 10DT24+2_10 
(analytical model).
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of the members, as discussed below. Rigid supports were pro-
vided under three of the web ends, and a vertical load was 
applied at the fourth. 

The shell elements were located at the centerlines of the 
webs and flange. The total height of the web elements was, 
therefore, the clear height of the web, 24 in. (610 mm), plus 
half the flange thickness. These same dimensions were used 
for computing the member properties in the analytical and 
FD solutions shown in Figs. 7 and 8, in order to facilitate 
comparisons. In the analytical and FD solutions, the torsional 
stiffness of the components, and in particular the webs, was 
taken as bt3/3, rather than the more precise value that depends 
on the b/t ratio of the component, because that is the value 
used in the FE model.

Tests with different mesh sizes showed that the flange bend-
ing moment at a location close to the web-flange junction and 
10 in. (250 mm) from the end of the member changed by less 
than 1 percent as the mesh size was reduced from 10 to 2.5 in. 
(250 to 62 mm). The data shown in the figures are for meshes 
with maximum element dimensions of 5 in. (127 mm) for 
the 60 ft (18.3 m) members and 2.5 in. (62 mm) for the 10 ft 
(3.05 m) member. 

To compare the FE solution with the analytical and FD so-
lutions, the twist angle due to rigid body rotation of the cross 
section, φr, was taken as the average of the rotations at the top 
and bottom of each web: 

 φr = 
φTS + φBS + φTL + φBL

4
 (34)

where
φTS =  rotation about longitudinal axis at top of 

supported web
φBS =  rotation about longitudinal axis at bottom of 

supported web
φTL =  rotation about longitudinal axis at top of 

loaded web
φBL =  rotation about longitudinal axis at bottom of 

loaded web
The total twist angle, φt, was taken as the difference in ver-

tical displacement between the centerlines of the webs, uy, 
divided by the centerline distance, s, between the webs:

 φt = 
uy

s
 (35)

where
uy =  difference in vertical displacement between two 

webs
s = centerline distance between webs of double tee
The twist angle due to distortion of the cross section was 

then taken as the difference between the total twist angle and 
that due to rigid body rotation:

 φd = φt − φr (36)

Figs. 7a to 7c show the twist angles computed using the 
FE model compared with the FD and analytical solutions; 
the FE solutions are shown as discrete symbols. The FE re-
sults are very close, but not identical, to the other two. The 
differences are smallest when the flange is the most flexible 
(10DT24+2_10) and largest for the stiff flange case of the 
10DT24+4_60. The agreement suggests that the analytical 

model captures the main trends in behavior, whereas the 
differences suggest that the primary shortcoming lies in the 
modeling of the stiffness of the flange between the webs.

Eq. (8), which defines the flange bending stiffness, ig-
nores the coupling between the out-of-plane moments in 
the transverse and longitudinal directions, whereas it is in-
cluded automatically in the FE computations. This is the 
most likely source of the error. However, the differences 
between the FE and analytical results, over a wide range of 
member properties, are much smaller than other potential 
sources of error, such as the modulus of rupture of the con-
crete, so the new model may be considered good enough for 
design purposes.

In addition to the twist angle, the flange bending moment 
is of practical interest. Because the flange bending moment is 
proportional to the second derivative of φr [as shown by Eqs. 
(8) and (10)], it is much more difficult to predict than φr it-
self; thus, it constitutes a severe test of the analytical model’s 
fidelity. Fig. 9 shows the distribution of the flange bending 
moment as computed using the FE and analytical models for 
the same structures as were used in Figs. 7 and 8.

For each of the double tee structures, the flange moments 
predicted by the FEA follow the same general pattern as those 
predicted by the analytical model, peaking at the member end 
and decaying toward midspan. The agreement is best when 
the flange is flexible relative to the webs.

In all cases, the FE solution for the flange bending moment 
differs in two respects from the analytical model at the ends 
of the member.

First, in the end region, the FE model predicts slightly 
higher flange bending moments than does the analytical 
model. The exact reason for this difference is unknown, but it 
is assumed that it is because the FE solution includes modes 
of response that are not present in the analytical model.

Second, at the very end, the FE solution shows a sudden 
drop in flange moment. 

It is worth noting that the CEG researchers appear to have 
found a similar behavior in their analyses.3 The CEG report 
states: “Once the maximum stress is reached, it occurs ini-
tially over a length of 3 in. [76 mm].” The CEG researchers 
used a 1 in. (25 mm) mesh size.

This drop in flange bending moment predicted by the FE 
models arises because of the coupling between the longitudi-
nal and transverse moments in the flange and the fact that the 
longitudinal flange moment must be zero at the free end. This 
fact was verified using a FE model for the member with a 2 
in. (51 mm) flange in which Poisson’s ratio was taken equal 
to zero (shown in Fig. 9 as nu = 0). 

This decouples the longitudinal and transverse moments 
and eliminates the drop in flange moment at the end. These 
two tendencies partially counteract each other, so the peak 
moment predicted by the analytical method is only 3, 5, and 9 
percent lower than that of the FEA for the three cases, respec-
tively. (The 9 percent error occurs with the 10DT24+2_10, 
which is an improbable structure in practice.)

In addition to the mechanisms discussed above, the pre-
cise value of the peak flange bending moment is influenced 
slightly by out-of-plane shear stresses, as demonstrated by 
the fact that the thick- and thin-plate FE solutions gave slight-
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ly different values. (The thick-plate values are not shown.) 
However, the discrepancy between the flange bending mo-
ments predicted by the FE and analytical solutions is smaller 
than uncertainties associated with the cross-section geometry 
that are discussed below, so it is proposed that no correction 
factor be used.

The good agreement between the analytical and FE solu-
tions shows only that the analytical model can reproduce the 
results of the FE model, but this still presupposes that the FE 
solution represents accurately the true behavior of the mem-
ber. Although that representation is expected to be close, sev-
eral issues remain to be verified. Examples are the effects of 
tapered webs, the use of shell elements placed at the element 
centerlines rather than using explicit element thicknesses, the 
effect of fillets at the web-flange junction, and the neglect 
of the shear deformations of the web and flanges. The con-
sequences of these modeling assumptions can best be deter-
mined by physical testing.

PARAMETERS INFLUENCING  
FLANGE BENDING STRESS 

In this section, the effects on the flange bending stress of 
varying the primary parameters are studied. The new torsional 
model is used because it offers the simplest way of conducting 
the calculations, and because the foregoing sections demon-
strate that it closely represents the behavior of the system.

Further consideration is given to the calculation of the geo-
metric parameters used in the analytical model to ensure that 
the true geometry of the double-tee member is modeled as 
accurately as possible. Plots are provided showing the impact 
of span length, flange width and thickness, and web depth and 
thickness on flange bending moment.

Calculation of Section Properties

In validating the analytical model 
through comparison with the FE 
model, the cross-sectional properties 
were computed using a “line model,” 
in which all the material was treated 
as being concentrated along the cen-
terlines of the webs and flanges. This 
model provided the closest approxima-
tion to the FE model, which was con-
structed using shell elements that have 
no explicit manifestation of thickness. 
This approach, however, leads to a 
somewhat imperfect description of the 
sections that are used in practice. To 
rectify this situation, several enhance-
ments were made to the analytical 
model to enable a closer representation 
of real double-tee cross sections.

First, the true geometry of the double 
tee was considered in calculating the 
St. Venant torsional constants, J, for the 
webs and flanges. To account for the as-
pect ratio of the webs and flanges, com-

ponent torsional constants were computed using the following 
empirical equation: 

 J = 
bt3

3
 1 − 0.630 

t
b

 1 − 
1

12
 

t
b

4

 (37)

where t is the average thickness (smaller dimension) of the 
component (web or flange) and b is the average width (larger 
dimension) of the component.

This equation was developed by fitting a curve to discrete 
results that were obtained numerically. It accounts approxi-
mately (with an error of less than 1 percent) for the variation 
in J with t/b. The effects of web and flange taper were ac-
counted for by multiplying J by the approximate factor cJ:

 cJ = 1 + 
tw,top − tw,bot

tw,top + tw,bot

2

 (38)

The true effect of a tapered web on J depends on both the 
aspect ratio of the web and the degree of taper; however, no 
single equation exists that addresses both factors. Use of 
Prandtl’s soap film analogy shows that Eq. (38) gives the 
exact correction for components with t/b = 0. In the interest 
of simplicity, it was used in the current study.

In addition to considering the geometry of the webs and 
flanges individually, the finite dimension of the web-flange 
intersections also was incorporated into the model. This was 
done in three ways.

First, to account for the impact of the web-flange intersec-
tion on the cross section shear stiffness, the torsion constant 
of the web, Jw, was increased using the approach suggested 
by Mack et al.1 This consists of taking for the effective web 
height the clear height below the flange plus a multiple, ntf, of 
the flange thickness. Mack et al. found that the value ntf = 2.0 
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gave J values closest to those provided by a Prandtl soap film 
analysis, so that value was used here.

Second, to account for the impact of the web-flange inter-
section on the distortional stiffness of the flange, the flange 
was treated as having a rigid-end offset. The parameter REOk 

is used to define the relative increase in stiffness associat-
ed with the rigid offset. Specifically, REOk is defined as the 
length of the rigid offset at each web, normalized with respect 
to the half-width of the web.

Setting REOk = 1.25 indicates that the flange is treated as 
rigid for a distance from the web centerline equal to 1.25 times 
the half-width of the top of the web. Use of REOk greater than 
zero stiffens the flange by reducing the length over which it 
is free to bend. An REOk value greater than 1.0 implies the 
existence of a fillet at the web-flange junction.

The parameter REOk is incorporated into the analysis by 
replacing Df  by Df,eff, where:

 Df,eff = 
Df

(1 − k)3
 (39)

and

 k = 
REOktw,top

s
 (40)

The parameter Df,eff  is used both in computing ν in Eq. (15) 
and for computing mf,max in Eq. (28).

Third, to improve the calculation of the maximum flange 
bending stress, the flange moment was evaluated at a loca-
tion away from the intersection of the web and flange center-
lines. This distance is referred to as REOm and is defined in 
the same way as REOk. Use of REOm greater than zero reduces 
the value of the computed moment. The parameter REOm is 
incorporated into the analysis by multiplying the maximum 
flange moment, mf,max, computed from Eq. (28) by (1 – m) 
where:

 m = 
REOmtw,top

s
 (41)

Both REOk and REOm can be specified independently; how-
ever, the two parameters are likely to have very similar val-
ues.

The modifications to the basic model can be summarized 
as a vector of modification constants:

 Modcon = (REOk, REOm, ntf, taper factor, J factor) (42)

The taper factor and J factor are triggers with values 0 or 1 
to invoke the use of the basic or refined value. For compari-
son with the analytical and FE solutions (data shown in Figs. 
7 and 8), the basic Modcon values (0, 0, 0.5, 0, 0) were used. 
However, in evaluating the impact of member geometry on 
flange stress, the following refined values were used: (1.25, 
1.25, 2.0, 1, 1). These values are believed to represent as best 
possible the true properties of a typical double tee.

Flange Bending Stresses

To investigate the impact of double tee geometry on 
flange bending stress, the refined analytical model was used 
to model a range of double tees. Fig. 10 shows normalized 
flange bending stresses for the double tees analyzed. 

The double tees included in the analyses had member spans 
ranging from 10 to 70 ft (3.05 to 21.3 m) and member depths 
ranging from 18 to 36 in. (457 to 914 mm). In all cases, the 
flange thickness was defined to be 2 in. (51 mm), the web was 
assumed to vary in thickness from 5 in. at the bottom to 8 in. 
at the top (125 to 200 mm), with the average web thickness 
defined to be 6.5 in. (165 mm), and Modcon = (1.25, 1.25, 
2.0, 1, 1). 

Following the assumptions used to develop the new torsion 
model, the flange bending stress is given by: 

 σf = 
6mf,max

t2
f

 (43)
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where mf,max is the maximum flange bending moment [Eq. 
(28)] observed along the length of the member. 

Note that the analytical model predicts that the maximum 
stress occurs at the end of the member. 

Concrete cracking is of primary importance in the design of 
double tees. ACI 318-029 defines concrete cracking stress as a 
multiple of fc’ , so it is convenient to normalize the bending 
stress by dividing it by fc’ . The maximum flange moment, 
mf,max, is a function of the concrete elastic modulus, E, which 
also is defined typically as a function of fc’ .

Thus, the maximum normalized concrete tensile stress is 
independent of the concrete compressive strength, and con-
crete material properties need no longer be considered in 
the calculations. (Note that Poisson’s ratio, νc, does have a 
small effect on the stress calculations but is taken to be 0.20 
throughout.)

To facilitate the use of the data presented in Fig. 10, con-
crete stress is presented normalized with respect to fc’  and 
with respect to the average twist per unit length [(φ0/L) × 
106]. Thus, the ordinate, cσ, in Fig. 10 is defined by:

 cσ = 
σf 

fc’
 

L

φ0 × 106
 (44)

where L is measured in inches and φ0 in radians. 
Thus, for a member with L = 720 in. subjected to a total 

twist of φ0 = 0.012 radians, a normalized stress ordinate of 
cσ = 0.6 corresponds to a stress of 10 fc’  (psi) [(0.830 fc’
(MPa)]. This is computed as follows: 

σf = cσ 
φ0 × 106

L
 fc’

= 0.6 (0.012 × 106) 
720

 fc’

= 10 fc’  (psi) 0.830 fc’  (MPa)  (45)

The data in Fig. 10 show that for a given section and twist 
angle, the induced torque (and thus flange moment) is not di-
rectly proportional to the member length. This is so because 
the total twist angle consists of φd, which dominates at the 
member ends, and φr, which dominates in the body of the 
member.

As the member length changes, the relative contributions 
of the two components differ. A long member has about the 
same amount of “end” but more “middle” than does a shorter 
one, so the overall torsional stiffness is a nonlinear function 
of the span length.

Figs. 11a to 11e show the impact on flange bending stress 
of variations in member length, flange thickness, web spac-
ing, web depth, and web thickness. In all cases, the reference 
value is for a 10DT24+2_60 with REO values of 1.25 and is 
obtained from Fig. 10. The vertical ordinate in Figs. 11a to 
11e gives the factor by which the stress must be multiplied 
if the normalized stress is read from the 10DT24+2 curve in 
Fig. 10. In each of Figs. 11a to 11e, only one characteristic is 
changed so that its individual influence can be seen.

Figs. 11a and 11b show the impact of member length and 
flange thickness on bending stress. Fig. 11a shows how the 
impact of flange thickness varies with member length, while 
Fig. 11b provides data for three specific member lengths. The 
data in Figs. 11a and 11b show that the 2 in. (51 mm) flange 
thickness leads to the highest bending stress at all spans ex-
cept very short ones [i.e., less than about 15 ft (4.5 m)].

The flange thickness affects both the demand and the ca-
pacity. A thinner flange leads to more cross-section distor-
tion and lower induced flange bending moments for a given 
twist angle. However, the section modulus of the flange and, 
thus, its cracking moment are also smaller. The data from 
Figs. 11a and 11b show that, for most practical spans, the 
stiffness effect dominates and the thinner flange is the more 
vulnerable. 

Fig. 11a. Stress 
correction 
factor for 
length. 
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Fig. 11b. Stress 
correction 

factor for flange 
thickness.

Fig. 11c. Stress 
correction 

factor for web 
spacing.

11d indicate that increased web depth results in increased 
bending stress. This can be attributed to increased deforma-
tion due to cross-section distortion and, thus, increased flange 
bending moment. The data in Fig. 11e show that flange stress 
increases as web thickness increases, which can be attributed 
to the fact that increased web thickness results in increased 
cross-section distortion and, thus, increased flange moment 
and stress.

Review of the data in Figs. 11a to 11e shows that, over 
the range of dimensions commonly used in practice, web 
thickness and web spacing exert the strongest influence on 
response. Flange thickness plays a relatively minor role. 

Fig. 11c shows the impact of web spacing on flange stress. 
The data in this figure show that for all member lengths, a 
greater web spacing leads to a lower stress for a given total 
twist angle. As with the flange thickness, this result is the 
consequence of two opposing effects. A larger web spacing 
reduces the flange moment for a given distortion rotation, φd, 
but it also makes the flange more flexible; thus, φd is a higher 
proportion of the total twist angle. The first effect is stronger 
than the second, and the net result is a reduction in flange 
moment (and stress) with an increase in web spacing.

Figs. 11d and 11e show the impact of web depth and thick-
ness on flange moment and bending stress. The data in Fig. 



May-June 2005 55

APPLICATION OF THE MODEL  
TO COMPUTE FLANGE STRESS

The peak flange bending stress depends on the member 
properties and the twist angle to which the double tee is 
subjected. Two methods for computing the stress are pre-
sented here.

The first method makes direct use of the equations devel-
oped using the new torsional model. This method is the more 
general approach and can be applied to any section size or 
shape. The primary disadvantage is the amount of calculation 
needed, although this can be ameliorated by programming 
the equations into a spreadsheet, as was done for this study. 

The second method makes use of the data provided in Figs. 
10 and 11. This method still requires the calculation of the 
section properties, particularly the values of J and Cw, but re-
quires less computational effort thereafter. Parameters J and 
Cw cannot readily be standardized because they are relatively 
sensitive to the web thickness, which, for any given tee depth, 
differs among manufacturers. Each method is demonstrated 
by means of an example.

Method A: Direct Calculation

The previously developed equations are used to compute 
the maximum flange bending moment and bending stresses 

Fig. 11e. Stress 
correction 
factor for 
average web 
thickness.

Fig. 11d. Stress 
correction 
factor for web 
depth.
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for a double tee with standard dimensions subjected to a pre-
determined twist angle.

Example double tee—Consider a 10DT24+4 spanning 60 
ft (18.3 m) for which one stem end is seated 0.75 in. (19 mm) 
lower than the other three. The cross-sectional dimensions 
are given in Table 1. It is assumed that corner fillets render the 
flange rigid for 1 in. (25 mm) beyond the face of the web, for 
calculation of both stiffness and flange moment. 

Calculation of required material properties—The con-
crete is assumed to have fc’ = 6000 psi (41 MPa) and νc = 0.2, 
from which:

Ec = 57 fc’  = 57 6000   
= 4415 ksi (30.44 GPa)

Gc = Ec/2(1 + νc) = 4415/2(1 + 0.2)  
= 1839.7 ksi (12.69 GPa)

Calculation of required section properties—The St. Ve-
nant torsion properties are computed first using the refined 
modeling approach that accounts for the web taper. For the 
flange:

tf /bf = 4/120 = 0.01333

Jf = 
bt3

3
 1 − 0.630 

t
b

 1 − 
1

12
 

t
b

4

= 0.3263bt3 = 2506 in.4 (1.043 × 109 mm4)

For each web:

heff = hw + ntf(tf) = 24 + 2(4) = 32 in. (813 mm)

tw,ave = 0.5(5 + 8) = 6.5 in. (165 mm)

t/b = tw,ave/heff = 6.5/32 = 0.2031

The taper factor, cJ, computed using Eq. (38), is:

cJ = 1 + 
tw,top − tw,bot

tw,top + tw,bot

2

 = 1+ 8 − 5
8 + 5

2 

 = 1.0533

Jw = cJ 
bt3

3
 1 − 0.630 

t
b

 1 − 
1

12
 

t
b

4

= 1.0533 × 0.2907bt3 = 2691 in.4 (1.120 × 109 mm4)

J = Jf + 2Jw = 7887 in.4 (3.283 × 109 mm4)

GJ = 1839.7(7887) = 14.51 × 106 kip-in.2 (41640 kN-m2)

To compute the restraint-of-warping torsion constant, Cw, 
the taper in the webs is ignored and, in the interest of sim-
plicity, the member is treated as thin-walled. Thus, the prop-
erties can be obtained from standard texts on mechanics of 
materials.2 The web height for calculating Cw is the centerline 

dimension, which is given by the clear height plus half the 
flange thickness, or 26 in. (661 mm) in this case.

The vertical eccentricity of the shear center, eSC, is:

eSC = hw 2 + 
bf

3tf

3s2hwtw

= hw   2 + (1203)(4)
(3)(602)(26)(6.5)

= 0.1728hw = 4.493 in. (114 mm)

Computation for Cw is then:

Cw = twhw
2s2(2hw – 3eSC)/12

= 6.5(262)(602)[2(26) – 3(4.493)]/12 

= 50.78 × 106 in.6 (13.64 × 109 mm6)

ECw = 4415(50.78 × 106)

= 224.2 × 109 in.4-kips (1.851 kN-m4)

The flange bending stiffness is:

Df = 
Et3

f

12(1 − ν2
c )

 = 4415 × 43

12(1 − 0.22)
 

= 24,530 in.2-kip/in. width (2.771 kN-m/m width)

Calculation of rigid end offset parameters—The impact 
of the finite-volume web-flange joint is modeled as follows:

REOk  = 
2 + tw,top

tw,top

 = 
2 + 8

8
 = 1.25

k = 
REOktw,top

s
 = 

1.25 × 8
60

 = 0.1667

ck = 
1

1 − k

3

 = 
1

1 − 0.1667

3

 = 1.728

Df,eff = ckDf = (1.728)(24,530)

 = 42,390 in.2-kips/in. width (4.789 kN-m/m width)

To allow for the rigid end offset in calculating the mo-
ment:

m = 
REOmtw,top

s
 = 

1.25 × 8
60

 = 0.1667

cm = 
1

1 − m

 = 
1

1 − 0.1667
 = 1.2

Dimensionless parameters:

λL = L GJ
ECw

 = 720 14.51 × 106

224.2 × 109 

= 720 × 0.008045 = 5.792
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νL = L
3Df,eff

sGJw

 = 720
3 × 42,390

60 × 4.950 × 106 

= 720 × 0.02069 = 14.90

From Fig. 6 [or Eqs. (18) to (21)]:

ct = 8.445

Calculation of maximum flange moment and bending 
stress—The total twist angle is computed as follows:

φ0 = 
∆
s

 = 
0.75

60
 = 0.0125 rad

From the total twist angle, the twist angle due to distortion 
is computed using Eq. (17b):

φd 
L
2

 = 
φ0 /2

1 + ct

 = 
0.0125/2

1 + 8.445
 = 0.667 × 10−3 rad

The peak flange moment is computed using Eq. (28) and 
the modification factors Df,eff and cm defined by REOk and 
REOm:

mf,max = 
6Df,eff

cms
 φd 

L
2

 = 
6 × 42,390

1.2 × 60 
 0.0006617

 = 2.337 kip-in./in. width (10.39 kN-m/m width)

The maximum flange bending stress is computed using Eq. 
(43) as:

σf = 
6mf,max

t2
f

 = 
6 × 2.337

42 
 = 876.5 psi

= 11.32 fc’ (psi) [0.939 fc’ (MPa)]

Consideration of self-weight and the applied torque—
It may be of interest to determine whether the member will 
twist enough under its own weight to rest on the four sup-
ports. The torque applied due to self-weight is given by:

Tt = 
W
2

 
s
2

 = 
49.5 × 60

4
 = 742.5 in.-kips (83.89 kN-m)

The twist angle due to self-weight of the member can then 
be obtained using Eqs. (6) and (27) as:

φ0 = 
TtL

GJ
 1 + 

1
ct

 = 
742.5 × 720

14.51 × 106 
 1 + 

1
8.445

 

= 0.04121 rad

This value is significantly larger than the difference in slope 
between the two supports of 0.0125 radians, so the member 
will rest on the supports under its own weight. 

Method B: Calculation Using Design Charts

In the direct method outlined above, the calculations are 
quite extensive and involve variables that are not commonly 
used in concrete construction. Thus, an alternative approach 
is presented in this section that obviates the need for many 
of the calculations shown above. This approach uses the data 
provided in Figs. 10 and 11 as design charts. The penalty for 

using this approach is a slight loss of accuracy that is inevi-
table when interpolating between curves on graphs. 

Normalized flange bending stresses are presented in Fig. 10 
for several representative double-tee sizes, spanning a range 
of distances that center on those used in practice, particularly 
the 55 to 65 ft (17 to 20 m) span that is used commonly in 
parking structures. In the interest of standardization, the web 
thicknesses are all the same [8 in. (200 mm) top and 5 in. 
(125 mm) bottom], and the refinements described above (web 
taper, rigid end offset, and so on) were used in all cases. 

The effect of slight variations from these standard dimen-
sions can be estimated by the information in Figs. 11a to 11e. 
The data in Figs. 10 and 11 are used as follows:

Example double tee—Consider the same member as in 
the last example, namely, a 10DT24+4 spanning 60 ft (18.3 
m). To achieve drainage, one of the four supports is to be 
lowered by 0.75 in. (19 mm) with respect to the plane defined 
by the other three.

Calculation of average twist—The average twist per unit 
length of the double tee is:

dφ
dz

 = 
∆
sL

 = 
0.75

60 × 720
 

 = 17.36 × 10-6 rad/in. (0.6835 × 10-3 rad/m)

Calculation of maximum bending stress using Figs. 10 
and 11—The ordinate in Fig. 10 for a 10DT24+2 gives the 
stress divided by fc’  per average rate of twist as 0.855. This 
value must be corrected for flange thickness. Fig. 11b gives a 
correction factor of 0.763 for a 60 ft (18.3 m) span and a 4 in. 
(100 mm) thick flange. Thus, the maximum flange bending 
stress can then be obtained as a multiple of fc’  as:

σf = 0.855 × 0.763 × fc’  × 
dφ
dz

 × 106

= 0.652 × fc’  × 17.36 × 10-6 × 106

= 11.3 fc’ (psi) [0.904 fc’  (MPa)]

For fc’ = 6000 psi (41.4 MPa), the absolute stress is:

σ = 11.3 fc’  = 11.3 6000  = 875 psi (7.10 MPa)

This result is almost identical to the 876.5 psi (6.04 MPa) 
computed using the exact equations. Note that the graphs 
present the stress in dimensionless form (i.e., stress divided 
by fc’ ), regardless of the value of E used. This is possible if 
E is taken to be 57,000 fc’  (psi). If E is known to have some 
other value, the stress must be scaled accordingly.

Evaluation of results—The 60.5 ft (18.4 m) long double 
tee tested by CEG had the foregoing cross-sectional dimen-
sions and cracked at a vertical web displacement between 
0.6875 and 0.75 in. (17.5 and 19.0 mm). If the average of 
these two values [0.7188 in. (18.2 mm)] is used, and the 
member is assumed to span 60 ft (18.3 m) between support 
centers, the computed bending stress is 10.8 fc’ , or 840 psi if 
fc’ = 6000 psi (0.858 fc’ , or 5.79 MPa if fc’ = 41.4 MPa).

This value lies within the range of modulus of rupture val-
ues commonly observed in laboratory tests. It would obvi-
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ously be slightly different if other assumptions were made 
about the magnitude of the rigid end offsets. This value was 
obtained using top and bottom web thicknesses of 8 and 5 in. 
(200 and 125 mm).

Mack et al.1 imply that the double tee tested by CEG3 had 
web thicknesses of 7.75 and 4.75 in. (197 and 121 mm) in 
accordance with the PCI Design Handbook.10 The predict-
ed flange bending stress would then change to 10.2 fc’  psi 
(0.846 fc’  MPa).

Using the refined approach presented in this paper, the St. 
Venant torsion constant, J, for this member is computed as 
7887 in.4 (3.283 × 109 mm4). Given this value, the method 
proposed by Mack et al.1 (their Fig. 11) predicts a shear stress 
of 375 psi for a 2 in. (2.59 MPa for a 51 mm) warp deflec-
tion, measured between the flange tips. This may be scaled 
linearly to 270 psi, or 3.49 fc’ , for 0.7188 in. warp measured 
between the stems of the tee (1.86 MPa, or 0.289 fc’ , for 
18.26 mm warp).

SUMMARY AND CONCLUSIONS
When double tees are twisted through sufficiently large an-

gles, they develop longitudinal cracks at the web-flange junc-
tion. The cracks are attributed to transverse bending of the 
flanges, which is not accounted for in classical torsion theory. 
A modification to classical torsion theory was developed to 
account for distortion of the cross section by flange bending, 
and it allowed the flange bending stresses to be predicted.

The equations of the modified theory were solved using 
both analytical and finite difference approaches, which were 
found to give essentially identical results. The analytical so-
lution also was verified for representative geometries using 
finite element analysis.

The modified theory was used to predict peak flange bend-
ing stresses in example double tees, and the results were found 
to be in plausible agreement with the initiation of cracking in 
two field specimens tested by others. Insufficient field data 
were available to make a precise comparison.

Based on the results of this study, the following conclu-
sions can be drawn:

1. The flange cracking at the ends of twisted double tees 
appears to be caused by flange bending stresses, and not by 
St. Venant torsional shear stresses. Flange bending causes 
transverse stresses at the web-flange junction that lead to ten-
sion on the top of the flange on one side and on the bottom 
on the other. These tension stresses are consistent with the 
longitudinal cracks at those locations seen in practice.

2. The modified torsion theory presented here can predict 
flange bending stresses that are qualitatively consistent with 
those found in the FE analyses and with the flange cracking 
observed in field tests by others. The value of the peak ten-
sion stress that the modified theory predicts is consistent with 
the twist angle at which cracking occurred in the field tests 
conducted by The Consulting Engineers Group.3

3. The flange bending causes the member’s torsional stiff-
ness to be lower than the value predicted using the classical 
St. Venant theory.

4. This analysis deals only with linearly elastic uncracked 
members. Propagation of cracks after initiation must be ana-
lyzed by other means.

5. The flange bending is largest at the end of the member, 
and it attenuates with increasing distance from the end.

6. Web thickness exerts the largest influence on the flange 
bending stress for a given rate of twist. Members with larg-
er average web thicknesses develop larger flange bending 
stresses.

7. The web spacing also has a significant influence on the 
flange bending stresses. As web spacing increases, flange 
flexibility increases and flange bending stresses decrease.

8. The member depth and flange thickness have only mod-
erate effects on flange bending stresses. 

9. The flange moment drops slightly at the very end of the 
member, so the peak moment occurs at a short distance from 
the end. This behavior was not predicted by the new method, 
but it was apparent in the FE analyses. It was shown to be as-
sociated with the coupling of the flange moments in the two 
orthogonal directions. For members of practical dimensions, 
the peak moment predicted by the new method occurs within 
6 percent of the value obtained by FE analysis.

RECOMMENDATIONS
After verification by laboratory testing, the method pre-

sented here may be used by engineers and producers to pre-
dict the onset of flange cracking at the ends of twisted double 
tees.

For further research, the following recommendations are 
made:

1. The foregoing stresses were predicted on the basis of 
a rational theory alone. Confirmation of the results by con-
trolled laboratory testing is highly desirable.

2. The effects on the predicted flange stress of certain fea-
tures of the cross-section geometry should be explored in 
greater detail. Examples are corner fillets, tapered webs, and 
treatment of the web-flange junction region in computing the 
torsion constant, J.

3. A more detailed investigation of the local drop in flange 
bending moment near the end of the member should be un-
dertaken.
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A = coefficient matrix in finite difference solution
b = width (i.e., larger dimension) of cross-section 

component
bf = flange width
B = bi-moment
cJ = coefficient for torsional stiffness of tapered web
ck = constant associated with rigid end offset for stiffness
cm = constant associated with rigid end offset for moment
ct = dimensionless constant that controls amplitude of 

distortion twist angle = cη /ρ
cη = dimensionless constant defined in Eq. (19)
cσ = ordinate of Fig. 10 equal to normalized stress 

defined by Eq. (44)
Cd = section distortion torsion constant
Cw = restraint-of-warping torsion constant
Df = stiffness of flange per unit length of double tee
Df,eff = effective stiffness of flange per unit length of 

double tee
eSC = vertical coordinate of shear center
E = Young’s modulus of elasticity
G = shear modulus
h = distance between nodes in finite difference solution
heff = effective height of web, used to compute J for the 

web
hw = height of web, measured to mid-thickness of flange
i = −1 (imaginary number)
J = St. Venant torsion constant
Jf = St. Venant torsion constant for flange
Jw = St. Venant torsion constant of one web
Kθ,end = stiffness of torsional spring in series with member
L = span length
mf = transverse flange moment per unit length of double 

tee
mf,max = maximum flange moment per unit length of double 

tee
ntf = number of flange thicknesses by which web height 

is increased in computing Jw

r = variable in Eq. (23)
REOk = rigid end offset factor for stiffness
REOm = rigid end offset factor for moment
s = center to center web spacing
t = thickness of cross-section component
tf = flange thickness
tw = thickness of web
tw,ave = average thickness of web
tw,bot = thickness of web at bottom of web

tw,top = thickness of web at top of web
T = torque
Tt = total torque
TSV = St. Venant torque
TSVw = St. Venant torque in one web
TRW = restraint-of-warping torque
u = variable in Eq. (23)
uy = difference in vertical displacement between two 

webs
w = variable in Eq. (23)
W = weight of member
y = vector of unknown twist angles in finite difference 

solution
z = longitudinal coordinate
∆ = deflection of one web relative to the other, parallel 

to plane of web
η = variable in equation for φr(z)
θ = variable in procedure for evaluating tanh(ηL/2) 

when η is imaginary
λ = variable in equation for φr(z)
µ  = absolute value of ρ
ν = variable in equation for φr(z)
νc = Poisson’s ratio for concrete
ρ = dimensionless variable in equation for φr(z)
σf = normal stress in flange due to bending
φ = twist angle
φ0 = twist angle of one end of member relative to the 

other end
φ0,add = additional twist angle of one end of member relative 

to the other end due to cross-section distortion
φ0,SV = twist angle of one end of member relative to the 

other end when pure St. Venant behavior is assumed
φd = twist angle due to distortion of cross section
φr = twist angle due to rigid body rotation of cross 

section
φt = total twist angle
φBL = twist angle at bottom loaded node in FE analysis
φBS = twist angle at bottom supported node in FE analysis
φTL = twist angle at top loaded node in FE analysis
φTS = twist angle at top supported node in FE analysis
Φ = vector of nodal twist angles in FD analysis
k = constant associated with rigid end offset for stiffness
m = constant associated with rigid end offset for moment

APPENDIX – NOTATION


