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PROBLEM STATEMENT
The computation of nominal bending resistance of rein

forced and prestressed concrete rectangular and flanged sec
tions is routine in design. However, for T-section behavior,
the results obtained from applying the AASHTO LRFD
Specifications1differ from those obtained from former
AASHTO Standard Specifications2and the ACT Building
Code.3’4This seems mostly due to an interpretation of T-sec
tion behavior which, unfortunately over time, has parted
from the original derivation of the rectangular stress block.
A viewpoint and counterpoint related to this issue have been
expressed in References 5 and 6.

The main objective of this technical note is to provide
clarification on how to “properly” adapt the simplified rect
angular stress block that was developed for rectangular sec
tions to T-section behavior.

For convenience, the following terminology will be used:
The term “ACI-AASHTO Standard” refers here to the ACT
Building Code3’4and the AASHTO Standard Specifications.2
The term “AASHTO-LRFD” refers to the AASHTO LRFD
Bridge Design Specifications.’

The ACI-AASHTO Standard implies that T-section be
havior begins when the depth of the equivalent stress block,
a = 1c, exceeds the depth of the flange, hf. The AASHTO
LRFD implies that T-section behavior begins when the ac
tual depth of neutral axis, c, exceeds lsj. This has implica
tions on the numerical value of the compression resistance
(and related nominal moment resistance) associated with
both the real stress block and the hypothetical equivalent
rectangular stress block.

In analyzing reinforced and prestressed concrete sections
at ultimate strength, a linear strain distribution under bend
ing is assumed and the tensile strength of concrete is ne
glected; thus, the portion of the concrete section that falls
below the neutral axis is considered to offer no resistance
and is ignored in the computation of nominal moment. In
approaching the analysis particular to T-sections, it is im
portant to realize that if the neutral axis falls within the
flange (Fig. 1), the section is treated exactly as if it were a
rectangular section with width b, and the corresponding
equations developed for rectangular sections apply without
any modifications.

The argument regarding “when does T-section behavior
begin?” has already been made in previous issues of the PCI
JOURNAL,5’6Clearly, strain compatibility requires the use
of depth of real compression stress block as the reference
for deciding whether the section should be treated as a rect
angular section or a T-section (Fig. 1). This condition
should remain the same in any approximation.

Using the reduced depth a = f31c to decide when T-section
behavior begins cannot be considered a reference. The top of
Fig. 2 illustrates T-section behavior with its compression
stress block, and Fig. 2, bottom, illustrates how forces are
calculated using nonlinear analysis with the real stress-strain
curve of concrete. The compression resultant is the difference
between the forces acting on two rectangular sections having
one side along the neutral axis. In this figure, there is no men
tion or need for an equivalent rectangular stress block; on the
other hand, any equivalent stress block must consider this
type of formulation a reference base for comparison.
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Rectangular Stress Block

The widely accepted rectangular stress block adopted by
both ACI and AASHTO to simulate the compression force
at ultimate of a reinforced concrete rectangular section is
shown in Fig. 3. The corresponding nominal compression
force resultant C, is given by Eq. (1):

C, = O.85f’ba = O.85fb/31c
a = f31c
O.65/3O.85 (1)

where

f’ = compressive strength of concrete
b = width of section
c = depth of neutral axis
a = depth of rectangular stress block

= a reduction factor
The product O.85f can be interpreted as the average

stress of the stress block. It is assumed to act over an area
ba, which for all practical purposes represents a reduced

area of compression zone. Thus, Eq. (1) can be rewritten as:

= (O.85f) x fl(bc)
= (Average stress) x fl1(Real area of compression zone)

C, (O.85f) x /3(bc)
= (Average stress) x (Reduced area of compression zone)

(Reduced area of compression zone) = /31(bc) (2)

Fig. 2. T-section
behavior from
strain compatibility
and computation of
compression
resultant.

COMPRESSION STRESS BLOCK:
ASSUMED AND REAL b.

Rectangular-section T-section
behavior behavior

Fig. 1. Condition for T-section behavior.
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Fig. 3. Equivalent rectangular stress block accepted by ACI
and AASHTO.

The rectangular stress block widely adopted by ACT and
AASHTO (Fig. 3) implies an average stress of O.85f; how
ever, since this “hypothetical” average stress is higher than
the real average stress (see discussion below related to Table
1), it is assumed to act over a reduced area equal to the real
compression area above the neutral axis multiplied by a fac
tor f3. Therefore, the factor /3 can be interpreted as a reduc
tion factor of the real area of the block under compression.
It also has another function — that is, to raise the centroid of
compression and thus increase the lever arm of the internal
resisting couple of the section at ultimate. Let us focus first,
however, on the numerical value of I3.

Fig. 4. Typical stress-strain curves of normal weight concrete
in compression.7’8

Compression Force C,, Obtained From
Stress-Strain Curve of Concrete

Fig. 4 shows typical stress-strain curves of concrete ob
tained from tests.7’8 Normalized equations that fit these
curves accurately have been developed with extrapolation
for compressive strengths in between those shown. The
value of C,, can be numerically computed by multiplying the
average stress acting over the area of the compression zone
by the full area of the compression zone; the average stress
is obtained by integrating the stress over the strain made
proportional to the neutral axis (Fig. 5). This is basically the
normalized area under the stress-strain curve up to the maxi
mum strain of interest.

Assuming the extreme fiber compression strain is taken
equal to 0.003 (from ACT 318), the following general ex
pression can be derived:

C,, = af,(bc) (3)

where a1 is the normalized area under the stress-strain curve
up to a strain of 0.003.

The product a1f’ represents the average stress over the
real area of the compression block, bc.

By comparing Eq. (3) with Eqs. (1) and (2) in order to
achieve equivalent forces, the coefficient a1 can be written
as:

a1=0.85xa20.85 xj31 (4)

Thus, the numerical value of code-recommended i3
should simulate the numerical value of a2 obtained from the
stress-strain curve of concrete. Values of a1 computed for
different values of f, according to the analytical curves
simulating those shown in Fig. 4, are given in Column 2 of
Table 1. Column 3 shows the values of a2 calculated from
a1 to satisfy Eq. (4), and Column 4 shows the values of 13i
used by ACT. Column 5 shows the values of f3/2 used to
represent the normalized distance from the center of com
pression of the rectangular stress block to the extreme com
pression fiber. Column 6 shows the values of coefficient a3,
which gives the normalized location of the centroid of com
pression directly obtained from the stress-strain curves.

It can be observed from Table 1 that the code values of j3
and /3/2 compare favorably with the values of a2 and a3 ob
tained from the stress-strain curves of concrete. It is impor
tant to understand that if we use an average hypothetical
stress of 0.85f, in the equivalent stress block, then we must
also use a compression zone reduced by a factor a2; for all
practical purposes, a2 is simulated in the code by i3. In the
way the rectangular stress block is defined, however, i3 has
the effect of increasing slightly the lever arm of the couple
at ultimate.

In comparing Column 5 to Column 6, one can indeed see
that the value of /3/2 simulates quite well the actual location
of the centroid a3 obtained from the stress-strain curves.
The results of Table 1 also show that compared to a2, /3 is
on the safe side; compared to a3, f3/2 is slightly on the un
safe side (since it increases the lever arm). Overall, given its
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a1f‘c

Fig. 5. Stress-strain
curve of concrete
and the shape of
the real stress
block.

Table 1. Comparison between coefficients obtained
from the stress-strain curve of concrete and assumed
design coefficients.

(1) (2) (3) (4) (5) (6)
-

_

--

a1 up to [3/2

f s = 0.003 j a2 by ACI by ACI a3
5 0.722 I 0.849 0.80 O.40 0.392

-

7 0.682 0.80 0.70 0.35 0.376
9 0.649 0.65 0.325 T0363

H°5
jO.723 0.650.325 0.354

13 0.582 0.684 0.65 0.325 0.349

simplicity, the code approximation is very good.
Note that if a parabola is used for the stress-strain curve of

concrete, as is often assumed in design, the following results
would be obtained: a1 = 0.67 and a2 = 0.79 for e,,,eak 8cu =

0.003; and a1 = 0.75 and a2 = 0.88 for Speak = 0.002 and
= 0.003, where 5peak is the strain at peak stress, f. These re
sults are all within the range of those observed in Table 1.

In conclusion, Table 1 gives us the confidence to infer
that if we use a hypothetical average stress in the compres
sion stress block equal to 0.85f, then we must also use a re
duced area of stress block; the related reduction factor a2 is

well simulated by f3j in the code. The above results imply
that the area of the overhanging portion of the flange of a T
section should never be fully utilized at an assumed hypo
thetical stress of 0.85f. It is unsafe to do so, even though
this is what is suggested in the ACI-AASHTO Standard.

Compression Force for T-Section Behavior

The rectangular stress block was first developed for a
rectangular section and then adapted to T-section behavior.
This has led to two different interpretations of application —

one stated in the ACI-AASHTO Standard and one used in
the AASHTO LRFD. In the treatment of T-sections, two is
sues should be clear:

1. T-section behavior begins when the depth of the neutral
axis c exceeds the depth of the flange hf.

2. If we use a hypothetical average stress of 0.85f in the
stress block, then the area of the compression zone must be
reduced by a factor (such as a2 or /3k). These observations
are dictated by strain compatibility analysis and the results
of Table 1.

If we assume that T-section behavior begins when a > hf,
as implied in the ACI-AASHTO Standard, then the follow
ing expressions are obtained for a =

Cl,
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Fig. 6. Typical
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compression stress

block of a
section.

cn =cnf+cnw
= O.85fba
= O.85fbhf

C0f = O.85f(b
— bw)hf

= O.85f x (Full area of overhanging portion of flange)

C= O.85fbWh.1
= O.85f x [3ibc
= O.85.f x (Reduced area of web portion)

where
= total compression resistance

Cnf = compression resistance of overhanging portion of
flange

C,= compression resistance of web portion of stress
block

I1-n
h= 6.5 in.

c = 10 in.

.

h?J
Tie
jV/////S/

hf= 6.5 in.

Fig. 7. T-sections used in example.
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Thus, the area of the overhanging portion of the flange is
fully utilized at an average stress of O.85ft,whereas the area
of the web portion is reduced for the same average stress.
This is consistent neither with analytical results from com
patibility (Table 1) nor with the true intent of the rectangular
stress block, which utilizes a reduction factor for the area.

For the treatment of T-sections by the AASFITO LRFD,9
the area of the overhanging portion of the flange of a T-sec
tion is multiplied by a reduction factor f3 similarly to what

(5) is suggested in the results of Table 1, where a2 is compared
to th. It is consistent with the concept of reduced area when
the hypothetical average stress is taken as O.85f. The corre
sponding equations are:

C =Q+CflW

= (O.85f) x f31(b
— bW)hf+ (O.85f) x f3ibc

Cnf = O.85fc’j31(b— bw)hf

= 0.8Sf x (Reduced area of overhanging portion of flange)

C= O.85fJbWh
= 0.8Sf x f3ib,,c
= 0.8Sf x (Reduced area of web portion) (6)

CLARIFICATION RELATED TO f3
The following paragraphs provide a clarification regard

ing the selection of the coefficient fit to represent the nu
merical value of coefficient a2 of Table 1 for the overhang
ing portion of the flange, and the corresponding location of
the centroid of compression.

a. The average stress on the overhanging portion of the
flange of a T-section depends on the neutral axis position; it
could be high if the neutral axis is relatively deep in the web
and if the stress-strain curve indicates that the concrete is
ductile. Conversely, it could be low if the stress-strain curve
shows the concrete as brittle (that is, with a steep descend
ing branch), as is the case with high strength concrete. Fig. 6
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shows two typical examples. Thus, the value of associ
ated with the overhanging portion of the flange for T-section
behavior could be more finely tuned with a2 from strain
compatibility; its value depends on a number of variables,
including section geometry, shape of the stress-strain curve,
and reinforcement ratio or index of the section. It is believed
that, although the use of /3 as a reduction factor of the real
stress block area does not cover all cases accurately, it is the
simplest way to accommodate most cases and is generally
on the safe side.

b. In both the ACI-AASHTO Standard and AASHTO
LRFD, the location of the resulting compression resistance
of the overhanging portion of the flange is assumed to be at
mid-depth of the flange. This may not reflect the exact cen
troid of compression obtained from strain compatibility, but
it is a simple and workable assumption for design purposes.
As a result, in both codes, the centroid of compression for
the overhanging portion of the flange is taken at mid-depth
of the flange, whereas the centroid of compression for the
web portion is taken at f31c/2 from the extreme compression
fiber.

IMPLICATIONS FOR OTHER
SECTION SHAPES

The preceding discussion and suggested simplifications
has implications beyond T-sections. If we extend the ap
proach to sections of other shapes (such as triangular, trape
zoidal, circular, or hollow-core), it is essential to comply
with a consistent and rational procedure. Such shapes com
monly occur in concrete poles and rectangular columns sub
jected to lateral forces not along their main axis.

In such cases, remembering the meaning of Eq. (2) and its
application is key to a simplified design, namely, a hypo
thetical average stress of 0.85f over a reduced compression
zone obtained by multiplying the compression area above
the neutral axis by the factor fit. Such a procedure can be
clearly projected when applying the AASHTO LRFD. In ex
tending the procedure of the ACI-AASHTO Standard to
other cases, however, confusion and possibly unsafe design
may result (see Example below).

Here also, it can be argued that the numerical values of
the multiplier when used as a reduction factor for the
compression zone, can be more finely tuned for circular or
triangular shapes. However, by selecting only one coeffi
cient for all cases, the AASHTO LRFD offers a consistent,
simple, and safe method to treat all design cases. More ac
curate results would demand a nonlinear analysis.

EXAMPLE
Consider the top flange of a bridge box girder. The prop

erties of the section are as follows:
b = l2in. (305 mm)
b =78in.(1981mm)
de = 96 in. (2438 mm)

f’ = 8 ksi (56 MPa)
= 0.65

c =lOin.(254mm)

a =/31c
= 0.65 x 10
= 6.5 in. (165 mm)

hf = 10 or 6.5 in. (254 or 165 mm) depending on the case.
Let us evaluate the nominal bending resistance using both

the ACI-AASHTO Standard and AASHTO-LRFD.

Case 1 (Fig. 7, Section 1)

Assume that the depth of the flange hf= 10 in. (254 mm).
Also, assume that the depth of the neutral axis c = hf= 10 in.
(254 mm). In this case, the section behaves as a rectangular
section and the following identical numerical results can be
obtained from either the ACI-AASHTO Standard or
AASHTO-LRFD:

a =fl1c
=0.65 x 10
= 6.5 in. (165 mm) = hf

= Cfl+ Cp,
= 0.85fba
= 0.85fbhf
= 0.85 x 8 x 78 x 6.5
= 3447.6 kips (15335 kN)

The location of the centroid of C, from the top fiber is:

a = /31c

2 2
— 0.65x10

2
= 3.25 in. (83 mm)

The resisting nominal moment M is:

Mn=Cn(de
—

= 3447.6(96 — 3.25)

319,764.9 kip-in. (36100 kN-m)

Case 2 (Fig. 7, Section 2)

Assume now that we consider the same problem but we
simply cut the top flange to hf = 6.5 in. (165 mm). Assume
also that c = 10 in. (254 mm), and, thus, a = hf= 6.5 in. (165
mm).

a. AASHTO LRFD

Cnf = 0.85f/31(b
— bW)hf

= 0.85 x 8 x 0.65(78 — 12)6.5
= 1896.18 kips (8434 kN)

C,= 0.85f x f31bc
= 0.85 x 8 x 0.65 x 12 x 10
= 530.4 kips (2359 kN)
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The corresponding resisting moment is:

M = c (de
-

+ c (d.
-

= 1896.18(96 — 3.25) + 530.4(96 — 3.25)

= 225,065.3 kip-in. (25400 kN-m)

It is observed that by cutting part of the top flange, which
represents about 30 percent of the total area, the nominal
moment resistance is reduced as expected (here proportion
ately).

b. ACI-AASHTO Standard
Since a = hf, the section is considered a rectangular sec

tion, similarly to Case 1 above, and thus there is no change
in the value of C, or M in comparison to Case 1. Therefore,
cutting the top flange by about 30 percent leads to no
change in nominal bending resistance. This is clearly an
aberration; the section does not really care about our as
sumptions; it has 30 percent less area to resist the load. In
order to use a reduced depth of stress block as assumed for
rectangular sections, we must first make sure that the area
for the full depth exists. Section 3 of Fig. 7 shows that por
tion of section assumed to exist by the ACI-AASHTO Stan
dard, but it does not exist and thus cannot offer any resis
tance. It is difficult to understand why code-writing
authorities do not see it that way.

CONCLUSIONS
In adopting a simplified treatment for T-section behavior

to compute nominal bending resistance, the following con
clusions are given:

1. T-section behavior begins when the depth of neutral
axis, c, exceeds the depth of flange, hf.

2. When computing the compression force resistance of the
stress block, and assuming a hypothetical average stress of
0.85f, the entire area under compression should be reduced
by a factor, here called a2; the simplest way to do that is to
take a2 = /3k, similarly to the case of a rectangular section.

3. The procedure in the AASHTO-LRFD follows the
above two conclusions and offers a rational procedure con
sistent with strain compatibility and the intent in which the
equivalent rectangular stress block was developed.

4. The procedure in the AASHTO-LRFD can be easily
adapted to cases of triangular, trapezoidal, circular, or ring-
shaped sections.

5. The procedure in the ACI-AASHTO Standard is not
consistent in the treatment of rectangular and T-sections; it
overestimates the contribution of the overhanging portion of
the flange when T-section behavior occurs. The fact that we
have had no problems so far does not imply that the proce
dure is correct nor that the safety margin for T-section be
havior is similar to that of a rectangular section.

6. If necessary, the coefficient that reduces the area of the
overhanging portion of the flange in the stress block of T
sections (taken as f3 in the AASHTO LRFD) could be fine-
tuned using nonlinear analysis.

The AASHTO Code allows the overhanging portion of the
flange to be 12 times the flange depth while the ACT Code
allows it to be 16 times the depth. Even higher values are al
lowed for precast, prestressed concrete beams. Commonly,
the flanges of T-sections are not confined. They often have
some grid reinforcement with supporting seats that create
stress concentrations under normal compressive stresses due
to bending as well as splitting tensile stresses; thus, they are
vulnerable to premature failure in compression especially
when thin flanges are used. Such behavior has been observed
in some experimental tests by the author. This gives the au
thor one more reason to believe that the approach in the ACI
AASHTO Standard to assume that flanges work fully at an
average stress of 0.85f can be unsafe and certainly leads to a
lower structural safety margin. Moreover, the values of load
factors that have been lowered in the 2002 ACT Code com
pared to the previous versions of the code oblige us to rely
on more accurate design procedures and avoid gross approxi
mations without proper calibration.

The moral of the story is that no approximation should be
made in a code without going back to basics. Once a con
ceptual error has been introduced, it is extremely difficult to
remove.
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