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S ystematic design equations for pre-
stressed concrete flexural members

have been presented previously by
Guyon,' Nilson," and Naaman. 4.5 While
of significant value, the equation sets
presented cannot be applied directly to
all steel profiles and loading systems.
The set presented by Naaman will de-
fine the minimum required beam sec-
tion moduli, at a given section (normally
the point of maximum moment), without
consideration of the steel profile, Often,
use of these minimum moduli will re-
quire a draped strand configuration.

Nilson presents essentially the same
set of equations, recognizing that a steel
profile with varying eccentricity along
the span will normally be required. A
second set is also presented, which was
derived specifically for a constant ec-
centricity steel profile. The equation

sets in Refs. 2 through 5 are thus not
directly applicable to design with other
common steel profiles such as strands
deflected at midspan.

The design equations presented here
were developed employing the same
techniques and principles used previ-
ously. However, their development ac-
counts for variables not considered be-
fore, and the resulting equation set is di-
rectly applicable to the design of gen-
eral noncomposite prestressed concrete
flexural members.

The steel profile is considered di-
rectly in the application of the equa-
tions, and the equations may be used for
design with full or partial prestressing.
The equation sets may be used for se-
lecting minimum weight standard sec-
tions, quickly investigating the effect of
different steel profiles on section mod-
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uli requirements, and developing new
or nonstandard sections for a given ap-
plication.

EQUATION SET
DEVELOPMENT

The use of these equations requires a
preliminary estimate of the effective-
ness ratio,R. This is defined' as the ratio
of the effective prestressing force after
all losses have occurred,P,, to the initial
prestress force immediately after trans-
fer,P,.

It is not, however, necessary to as-
sume all losses will have occurred prior
to the application of the superimposed
loads. An estimate of the self weight, w0,

of the beam is also required, as is, occa-
sionally, an estimate of the ratio of the
distance from the section centroid to the
top of the beam, c 1 , to the total section
depth, h.

Prestressed concrete beams designed
by the working stress method presently
in use must riot develop flexural stresses
that exceed the allowable stresses both
at the time of force transfer and at the
full service load stage. The "critical
section" at each of these load stages is
defined as the cross section at which the
concrete stresses are highest relative to
the allowable stresses.

For beams with a constant steel ec-
centricity, the critical sections at transfer
are the beam ends, where the self
weight moment, Ma , does not counter
the prestressing moment. For beams
having a strand profile that is deflected
at discrete points within the span, the
critical section at transfer normally oc-
curs at one or more of the deflection or
drape points (the end eccentricity being
limited to ensure this).

The critical section under service
loading is located at the point having the
highest ratio of total moment due to
loads to the moment due to prestressing
(if, it is assumed, a prestressing force

Synopsis
General design equations are de-

veloped for the systematic design of
prestressed concrete flexural mem-
bers.

The set of equations presented
may be applied directly to the design
of prismatic prestressed beams re-
gardless of the prestressing steel pro-
f#ke and loading. They are intended for
use with allowable concrete stress
limits and the working stress design
method.

The equation set permits a sys-
tematic, direct design approach for
general noncomposite prestressed
concrete flexural members. Numerical
examples are included to illustrate the
application of the proposed equations.

remains essentially constant throughout
the span). Normally, this is located at or
very near the point of maximum total
moment due to loads (including self
weight).

INITIAL PRESTRESSING
FORCE, P,

Fig. 1 illustrates the limiting stress
distribution at the critical section at
transfer. The allowable tensile and
compressive stresses, ffi and f i , respec-
tively, are both attained. Note that the
sign convention adopted herein as-
sumes that compressive stresses are
negative.

The compressive stress at the section
centroid, f a„ may be computed from the
following equation developed from con-
sideration of similar triangles:'

f,. = fri –	(f,^–.fci)	 (1)
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Fig. 1. Optimal stress distribution at critical section at transfer.

The initial prestressing force at
transfer is then given by:

P= –A ^fv	 (2)

whereA, is the gross cross-sectional area
of the beam.

MAXIMUM ECCENTRICITY
AT CRITICAL SECTION

AT TRANSFER

The self weight moment at the critical
section at transfer is defined as M,, and
the limiting stress distribution at the
critical section shown in Fig. 1 applies.
In Fig. 1,f p and f, p are the top and bet-

torn fiber stresses, respectively, that
would occur due to prestressing alone.
The symbols S, and S, are the upper and
lower elastic section moduli, respec-
tively.

At the top of the section, the allowable
tensile stress fi{ is given by:

P Pe Ma
fgi _ — — + Sk — Ŝ	 (3)

where ez is the steel eccentricity at the
critical section at transfer. Upon sub-
stitution of Eq. (2) and rearranging, the
maximum eccentricity is given as:

	

{ee )mar = 51 Mfr, — fea + "^"
	 (4)

P,	 )P;
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Fig. 2. Stress distributions at full service critical section.

REQUIRED SECTION
MODULI

The stress distribution shown in Fig.
1 applies at the fill service critical see-
tion prior to the application of the
superimposed loads providing the self
weight moment and eccentricity at the
two critical sections are identical, and
the effectiveness ratio, R, is unity.

In general, however, the stress dis-
tribution in Fig. 2 applies in which three
possible stress increments have been
included:

1. The stress increment due to
changes in the self weight moment be-
tween the two critical sections.

2. The stress increment due to differ-

ing eccentricities between the critical
sections.

3. The stress increment due to pre-
stressing losses as the prestress force is
reduced from P. to Fe.

In Fig. 2, A,% is the difference (pos-
itive or negative) in self weight moment
between the critical sections, and is
given by:

AM.=Mo,– Ma , 	 (5)

where Moe is the self weight moment at
the full service critical section. The
stress reductions (or increases) ' f' and
A fa are the top and bottom stress in-
crements, respectively, due to differ-
ences in eccentricity between the two
critical sections:
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t fI = Pret —Peep = P` (et  e) (6)S,	 S,	 S,

and

Ajf2= S-  (7)

where e, is the eccentricity at the critical
transfer section and e, is the eccentricity
at the full service critical section. The
quantity (e, — e3 ) may again be either
positive or negative. In many practical
cases, this quantity is zero.

The stress reductions Aqf, and i2f2
are due to the reduction in prestress
force from time-dependent losses. The
top fiber stress range that would occur
due to prestressing alone, f1 , is given
by:

Jig = .far + s° t	 (Si

After time-dependent losses have oc-
curred, this stress is reduced to:

PE Ji p = R ^fti + .t 
ISi1

Hence:

A2fi = ft{ + M0r — R fi{ + 
`Ilaf

S,	 51

or

	

1	 , ut/
^Ef, _ (1 — R) ftt + S1	(11)

Similarly

MQ,
f2 = (1 —R) —f,+ s )	 (12)

x

The top and bottom stresses, f, p and
f2r, respectively, are therefore the effec-
tive stresses at the full service load
critical section prior to the application
of the superimposed dead and live
loads.

Fig. 3 illustrates the limiting stress
distribution under full service loading.

The top (f, r ) and bottom (f,,.) stress
ranges are the stress increments avail-
able to resist the superimposed loads.
The superimposed dead and live load
moments are defined as MD and M,.. The
required section moduli are thus given
as:

M"+ML	 (13)
fir

Mp+M,

5x	 fxr	
(14)

With reference to Figs. 2 and 3, the
top stress range, f,,, is given as:

^Mo
fir = fii — fc. A ,f, — 32fi (15)

Si

or, upon substitution of Eqs. (6) and
(11):

	

Air =Rftt — f. — (I —R)	 of

S,
9 M, _ Pe

—	 (e, — eg )	 (16)
S,	 S,

O Ma
}2r = }ta f }ct — 5 — A1.fx —A 2f2 (17)

E

fir=fte — Rff { — (1—R)
S 2

  `O(

S2	 S2

Eq. (16) is substituted into Eq. (13)
and rearranged to produce the upper
section modulus requirement:

Si a'

(1—R)Mo,+ AM0 +MD +ML +P, (e,—eg)
Rfir —fa

(19)

Eq. (14) is the lower section modulus
requirement which, after substitution of
Eq. (18) and rearranging becomes:

(9) The bottom stress range is given by:

(10) and upon substitution of Eqs. (7) and
(12) becomes:
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Fig. 3. Full service critical section stress distribution
due to superimposed loads.

S$

(1 — E)M + AM0 +MD +M,+Pe (ei – e,)

(20)

duce to:

S	 Mo, + Mn + ^ I, 	 (21)
R ,frt —,f,s

The above two equations, together
with Eqs. (1), (2), and (4) are the
generalized flexural design equations
for prestressed concrete beams.

Similar equation sets are developed in
Ref. 3; one set for the specific case
wherein the locations of the two critical
sections coincide, and a second set ap-
plicable to beams having a constant
steel eccentricity. The equations de-
veloped herein reduce correctly to those
in Ref. 3 when applied to those specific
cases. For example, in beams having a
constant steel eccentricity, the variable
M„ t in Eqs. (19) and (20) is zero, AM,
then equals M, , and the quantity P, (et 

–e,) is zero as well, Eqs. (19) and (20) re-

and

S2 _ MM, + Mif) + Mi	
(22)

f — Rfci

Eqs. (1) and (2) are unaffected by
critical section locations or steel profile,
and the last term in Eq. (4) is zero. Eqs.
(1), (2), (4), (21), and (22) are equivalent
to those found in Ref. 3.

An estimate of the ratio c1 /h prior to
section selection using Eqs. (19) and
(20) is required only when Pe is needed
in those two equations [thus requiringP,
from Eq. (2)]. However, for normal con-
crete strengths, effectiveness ratios, and
ratios of concrete strength at transfer to
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the 28-day strength, the upper (S 1 ) and
lower (S2 ) section moduli requirements
from Eqs. (19) and (20) will typically be
similar in magnitude since the de-
nominators of the two equations will
have similar magnitudes.

A bisymmetrical section is then indi-
cated, with the ratio c1 1h equal to 0.50. If
the design equations are being used to
select a standard section (a double tee
section of appropriate depth, for exam-
ple), a reasonable estimate of the ratio
can he arrived at by examining listed
section properties for the standard sec-
tions.

The design equations developed can
be applied directly to general prismatic
prestressed concrete flexural members,
and provide a systematic approach to
working stress design of such elements.
Their development follows closely
those presented in previous works, and
are based on accepted principles of
flexural behavior. Their use, however,
cannot guarantee an acceptable final de-
sign in all cases.

The maximum eccentricity from Eq.
(4) may exceed the maximum eccentric-
ity allowed by geometric or cover con-
straints, and the equations do not ensure
adequate deflection characteristics or
flexural strength in all cases, These pos-
sibilities must be considered before the
design can be considered acceptable.

NUMERICAL EXAMPLES
Two numerical examples are pre-

sented to illustrate the use of these equa-
tions (Note: 1 in. = 25.4 mm, 1 kip =
4.448 kN, 1 psi = 6.895 kN/m s, 1 kip/ft =
14.59 kN/m, 1 ft-kip = 1.356 kN•m.)

EXAMPLE 1

A 60 ft simply supported pretensioned
beam is to carry a concentrated live load,
I.., at one of the two third points only.
There will be no superimposed dead
load. The beam section is rectangular

with a width of 16 in. and a total depth of
36 in. The self weight, wo , of the beam is
0.60 kips per ft. The strands are to be
draped at midspan, with the eccentricity
reducing linearly to zero at the beam
ends.

The specified concrete strength at
transfer, f^i is 5000 psi, and the specified
28-day concrete strength, ft , is 6000 psi.
An effectiveness ratio, R, of 0.80 will be
assumed. The design equations will be
used to determine the allowable mag-
nitude of the service live load, L, the
allowable midspan eccentricity, and the
required initial prestressing force, P1.

ACI allowable stresses will he used as
follows:

V)ci 	 psi
fi — 0.6 ry=-30Mpsi
f„= 6^,^' =464psi
f,, = 0.45f = 2700 psi

The concrete section properties are:
S,=S2 =3456 in?
A, = 576 in.'
c, = c$ =18.0 in.

The beam is shown in Fig. 4. By in-
spection, the critical section at transfer
is the midspan section. The critical sec-
tion at full service load will almost cer-
tainly be at the third point under the
load L. The maximum total bending
moment will occur at either the third
point or midspan (to be determined
later), and the eccentricity at the third
point is less than the midspan eccen-
tricity.

The self weight moment at the critical
section at transfer, M0 , equals:

s
Mai = '^°8 = 270 kip-ft

By Eq- (1),J,Q = – 1394 psi
By Eq. (2), Pi = 802,944 lb and
Pe = RPi = 642,355 lb
By Eq. (4),(e,),„„r= 10.95 in.

The eccentricity at the third point is
thus:

ed= 

3 

ei=7.30in.

The self weight moment at the third
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Fig. 4. Beam elevation for Example 1.

point, M, is given by:
IGQL2

M v = 9 – 240 kip-ft

and

AM. = 240 -- 270 = – 30 kip-ft

From Eq. (19), the maximum allow-
able live load moment is:

(ML ),,, , = 607.06 kip-ft

From Eq. (20), the maximum allow-
able live load moment is:

(ML )maz = 605.74 kip-ft

Thus, since the moment determined
from Eq. (20) governs, the allowable
load L at the third point is 45.43 kips.
The total service load moment at the
third point is 605.74 kip-ft plus the self
weight moment of 240 kip-ft, or 845.74
kip-ft. The total moment at midspan is
724.31 kip-ft. Thus, the ratio of
maximum total moment to prestress
moment (eccentricity) is highest at the
third point under the load, and the as-
sumed critical section location at full
service loading is correct.

Flexural stresses at the critical section
at transfer are:

f, = 212.6 psi, f, = –3000.6 psi

These values are virtually identical to

the allowable stresses. Flexural con-
crete stresses at the third point under
the service load are:

f, = –2695.0 psi, f2 = 464.6 psi

These values are, again, very near the
allowable stress limits.

It should be noted, however, that the
results will not in every case be quite so
optimal. Sections actually selected in
design will frequently have one or both
section moduli exceeding the required
values, and the actual stresses will
hence not compare as well with the al-
lowable stresses.

Further, the numerical values of the
denominators of Eqs. (19) and (20) were
virtually identical in this example, due
to the values of R and the concrete
strengths at transfer and full service.
Thus, the section moduli required were
also virtually identical, and a bisymmet-
ric section is an appropriate choice.

EXAMPLE 2

A PCI standard 8 ft double tee section
will be selected fora roof member given
a span length of 36 ft, a superimposed
dead load of 10 psf, and a live load of 25
psf. The beam elevation is shown in Fig.
5, and the cross section is shown in Fig.
6. Straight strands will be used, and a
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concrete topping will not be employed.
An effectiveness ratio, B, of 0.85 will be
assumed, and concrete with a release
strength of 4000 psi and a design
strength of 5000 psi will be used.

ACI Code allowable concrete stresses
are ur as follows:

f" = 6 tip' 	 = 379 psi

fi e – 6 \ = 424 psi

fri = 0.6fc'f = 2400 psi

L; = 0.45f f = –2250 psi

A beam weight, w 0 , of 340 plf will be
assumed. The minimum section moduli
are determined from Eqs. (21) and (22)

in which:

L
Mo, =t 	

E =55.1kipftS
wp + W 	 (8) (35) = 280 plf

ML, + ML = l wn + ___ = 45.4 kip-ft
8

From Eq. (21): S 1 = 469. in.g (mini-
mum).

From Eq. (22): S 2 = 489. in. 3 (mini-
mum).

Several double tees and their section
properties are shown in Table 1.

While all sections listed have an ade-

WD +wL

_^ et =es7
steelsection

centroid centroid

L. 36'-0"

Fig. 5. Beam elevation for Example 2.

ci

section
centroid

4,-on

Fig. 6. Double tee beam cross section for Example 2.
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Table 1. Summary of section properties for various double tees.

Designation h, in. A,., in. w, pif S,, in.' 52, in. c,lh

8DT 14 14 306 319 1307 429 0.246
8DT 16 16 325 339 1630 556 0.254
8DT 18 18 344 358 1966 701 0.262

quate upper section modulus for this
application, the 8DT 16 is the lightest
section having an adequate lower sec-
tion modulus. This section is an appro-
priate selection in this example. The self
weight of 339 plf is close to the assumed
value, and repeating the selection pro-
cess with the correct value is unneces-
sary. From Eqs. (1), (2), and (4), the max-
imum permissible eccentricity (gov-
erned by the critical section at transfer,
e.g., the beam end) is:

(e,).., = 10.83 in.

The minimum eccentricity, governed
by the bottom fiber concrete stress at the
full service load critical section (mid-

span) can be computed as:

e,= 9.03 in.

The eccentricities above were found
using a value for the prestress force at
transfer (P 1) of 106,230 lb as determined
from Eqs. (1) and (2). Note that a single
acceptable value for the eccentricity was
not found, but rather a range of values.
This is due to the selected section hav-
ing excess capacity, since both section
moduli are greater than the minimum
required. Required flexural strength,
acceptable deflections, and adequate
concrete cover over the strands must he
determined prior to final acceptance of
this design, as stated previously.

CONCLUSION

The equation set, when compared
with previously developed sets, explic-
itly accounts for the differences in self
weight moment and eccentricity be-
tween the critical sections at transfer

and at full service loading. The equa-
tions are thus applicable to the design of
noncomposite prestressed concrete
beams regardless of loading and steel
profile.
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APPENDIX - NOTATION

A = cross-sectional area of beam, in
c,	 = distance from neutral axis to top

of beam, in.
C2	 = distance from neutral axis to

bottom of beam, in.
e,	 = steel centroid eccentricity at full

service load critical section, in,
et	 = steel centroid eccentricity at

critical section at prestress force
transfer, in.

Jr	 = specified 28 day compressive
strength of concrete

fri = specified compressive strength
of concrete at time of initial pre-
stress

fre = allowable concrete compressive
stress at transfer, psi

fCD = concrete stress at neutral axis at
transfer, psi

fCR = allowable concrete compressive
stress at full service, psi

fri	 = allowable concrete tensile
stress at transfer, psi

fit = allowable concrete tensile
stress at full service, psi

f^	 = top fiber concrete stress, psi
f2	 = bottom fiber concrete stress, psi
fie = top fiber concrete stress at full

service critical section prior to
application of superimposed
loads, psif. = bottom fiber concrete stress at
full service critical section prior
to application of superimposed
loads, psi

fir = top fiber concrete stress due to
prestressing alone, psi

lip = bottom fiber concrete stress due
to prestressing alone, psi

fir top fiber concrete stress range
available to superimposed
loads, psi

fir = bottom fiber concrete stress
range available to superim-

posed loads, psi
h	 = section depth, in.
L = span length, feet, and concen-

trated live load, kips, in Exam-
ple 1

Mo„ = self weight moment at full ser-
vice critical section, lb-in.

Mt,` = self weight moment at critical
section at transfer, lb-in.

MD = superimposed dead load mo-
ment at full service critical sec-
tion, lb-in.

ML = superimposed live load moment
at full service critical section,
lb-in.

Pe	 = prestress force after losses, lb
P,	 = prestress force immediately af-

ter force transfer, lb
R	 = effectiveness ratio, Pe1P1
S,	 = upper section modulus, in.3
Ss	 = lower section modulus, in.3
w D = superimposed dead load, plf

= superimposed live load, plf
ev,, = beam weight, plf
0 Mo = change in self weight moment

from full service critical section
to critical section at transfer, Ib-
in.

0, f, = top concrete stress change from
critical section at transfer to crit-
ical section at full service load,
due to change in eccentricity
between two sections, psi

A, f^ = bottom concrete stress change
from critical section at transfer
to critical section at full service
load, due to change in eccen-
tricity between two sections, psi

^^fl = change in top fiber concrete
stress due to time-dependent
prestress losses, psi

Q Ef2 = change in bottom fiber concrete
stress due to time-dependent
prestress losses, psi

NOTE: Discussion of this paper is invited. Please submit
your comments to PCI Headquarters by November 1, 1985.
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