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The elastic design of prestressed con-
crete members is based on two main

assumptions: (1) sections which were
plane before deformation remain plane
after deformation and (2) strains remain
proportional to stress.

With a material like concrete, these
two assumptions remain satisfactory so
long as the stresses do not exceed cer-
tain limits which depend upon the
strength of concrete. Both assumptions
become progressively more inexact as
the stresses increase beyond these lim-
its. However, in our present state of
knowledge, the elastic theory of design
still remains one of the most effective
methods for proportioning a prestressed
concrete member. The stress Iimits are
generally chosen so that the structure
wil] be usable and safe under service
load conditions while ultimate load
conditions are satisfied and a reasonably

economical use is made of the material.
Prestressed concrete beams are gen-

erally classified as either short span or
long span beams,' In long span beams,
the self weight moment constitutes a
major portion of the total moment. In all
such cases, it is impractical to accom-
rnodate the eccentricity within the beam
section given by the expression:

e=k — "z`+M—
b

Pt 	p^

where

ke = bottom kern distance
ftt„ = permissible stress at top fiber

of section at transfer
Zt = section modulus with refer-

ence to top fiber of section
M,m = self weight bending moment

of member
P, = prestressing force at transfer

i>1f^



The scope of this article is restricted
to the design method for beams coming
under the category defined by the above
equation.

LITERATURE REVIEW
Many attempts have been made in the

past to obtain a rapid solution to the
problem of determining the minimum
weight section of a long span beam.'--'

An early classical contribution was
that of Guyon.' His approach to the
problem was to establish a balanced in-
teraction between refined mathematical
theory and actual practice. In his
method, the effect of prestress losses is
assumed initially to be negligible.

To account for this assumption, lower
permissible stresses at the transfer stage
than what otherwise would have been
allowed in design were suggested.
These assumptions enabled him to ob-
tain an expression for the bottom fiber
section modulus independent of the un-
known self weight moment M. By fix-
ing the eccentricity of the prestressing
force based on practical considerations,
a quadratic expression in y, involving
the efficiency factor PG can be obtained.
At this stage a suitable value for p, is
assumed and solved for y i . Knowing yi
and,Z b , the sectional dimensions bt and
bb can be determined for the assumed
values of d, t b, tr, and b.

For this improved section, the actual
efficiency factor Po is calculated. If the
value is not close to the one assumed, a
fresh value of pG closer to the one ob-
tained in the preceding cycle of iteration
is assumed and the quadratic expression
in yt is again solved and fresh section
dimensions are calculated. This proce-
dure is continued until the assumed and
calculated values of p, ; are close to each
other. The effective prestressing force is
obtained from the permissible stress
distribution at working load.

The shortcomings of this approach are
(1) the method is essentially iterative

Synopsis
Describes a direct method (with the

aid of a computer program) by which a
minimum weight section can be ob-
tained for long span prestressed con-
crete members without resorting to
the use of either iterative techniques
or design curves. The cross section
derived by this procedure satisfies the
transfer and working load permissible
stresses at the bottom fiber, the
working load permissible stress at the
top fiber, and the cover requirements
of the center of gravity of the pre-
stressed reinforcement. It is shown
that for either the given or assumed
data the area of the section so worked
out is the absolute minimum. Design
guidelines are given for obtaining the
least weight section of a member and
a fully worked design example is also
included.

and time consuming; (2) in determining
the sectional dimensions, an unrealistic
assumption, namely, that the effect of
prestress losses is negligible, is initially
made; and (3) the increased stress val-
ues in the section at transfer which
occur because of the above assumption
are either accepted or the section must
be revised.

Another iterative method developed
by Chetty, Prasada Rao, and Bhargava'
makes use ofGuyon's intuitive ideas de-
scribed in Ref. 1. The effect of the loss of
prestress is duly taken into account by
introducing a loss factor into the rele-
vant expressions. The actual permissi-
ble stresses at transfer of prestress are
used. The self weight moment Mve is
expressed in terms of the area of the
section. The rest of the procedure is
identical to that given in Ref. 1. This
method is an improvement over
Guyon's method since it does not make
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the unrealistic assumption that the ef-
fect of loss of prestress was negligible.
However, it has the other drawback of
being an iterative method.

Khachaturian, Ali and Thorpe2 have
developed an interesting method in-
volving dimensionless parameters. In
this method, the shape factor A, that ex-
actly satisfies the stresses at transfer and
working load conditions is first calcu-
lated. A value of 0 > Ae is assumed as a
target. An expression involving the sec-
tional area as an unknown is obtained in
terms of A, pk , ,? and the permissible
stresses fb ,oa and fb ,p at the bottom fiber
of the section. The factor Pk is the only
unknown in the expression so obtained.
For the assumed ratios of b b lb, and tld,
the ratio of b,,,/b, is obtained from the
expression of the shape factorh. For this
assumed value of A, the efficiency factor
Pk is found from the relevant expression.
Then A, b 1 , and by are calculated. The
eccentricity is determined from the
cover requirements and the prestressing
force is then computed by substituting
this value of e in the bottom fiber equa-
tion of the working load condition.

The shortcomings of this method are:
(1) an initial estimate of the shape factor
A has to be made. This, in some cases,
leads to a section that either gives too
much or insufficient cover to the pre-
stressing steel, so a minimum weight
section is not obtained; and (2) the
method assumes that the bottom and
top flange thicknesses are identical. In
many cases, a larger bottom flange
thickness may he desirable to facilitate
proper placement of tendons.

Nilson has proposed another inter-
esting iterative method for the design of
long span beams. In this method, the
self weight moment M is divided into
two parts. The first part comprises that
portion of self weight moment (1 -- }c)
M.,, which can be treated as for any short

span beam. The second part entails the
balance of the self weight moment
which can be treated as additional ap-
plied moment. The maximum eccen-
tricity is determined from cover re-
quirements. This eccentricity is then
equated to the one corresponding to the
top fiber stress at transfer when the ficti-
tious first part of the self weight bend-
ing moment (1 – A)M,,, is assumed to be
acting and solved fort. If this value ofpc
differs from that assumed in calculating
the section moduli, a revised value of u.
is adopted. The procedure is continued
until the assumed value oft is equal to
the one given by the eccentricity equa-
tion. The rest of the design procedure is
identical to that of short span beams.

The shortcomings of this method are.
(1) the approach is iterative and time
consuming; (2) it does not lead to a min-
imum weight design; (3) the method
does not directly lead to sectional di-
mensions; and (4) the resulting design
may require additional prestressing
force.

The method suggested by Saethei6 as-
sumes initial values of d, b, rb , t,, and
M„o . The self weight required is
checked with the initial assumed value.
The rest of the procedure is similar to
that given in Ref. 1, which is basically
iterative. This method does not apply for
long span beams because the calculated
eccentricity either falls outside the sec-
tion or gives insufficient cover.

Another direct method for the mini-
mum weight design of prestressed con-
Crete members was developed by
Prasada Rao.' For a given beam depth,
web width, and flange thicknesses, this
method directly gives the section di-
mensions without any trial and error
procedures. The computed section
exactly satisfies all the permissible
stresses. The method utilizes the prin-
ciples developed by Guyon, Chetty,3
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and Saether.6 However, it does not work
satisfactorily for long, span members for
the same reasons as Saether's method.

Through a newly introduced load in-
teraction concept, Hatcher has ob-
tained expressions somewhat similar to
those of Khachaturian. 2 In this method
too, G1 greater than A,, is assumed and
hence the designs worked out by this
method do not lead to minimum weight
design unless the designer resorts to ad-
ditional trials.

Some methods based on mathematical
optimization techniques have been
published such as those of Morris. In
general, these methods consider all the
probable variables involved in a given
problem and try to obtain an optimum
solution for the required objective func-
tion at the expense of valuable computer
time. The eight variables involved in an
elastic optimization problem are well
known. As Naaman rightly pointed out
in a discussion,* there are seventy com-
binations of solutions for these un-
knowns, taking any four of these quanti-
ties as known values.

The influence of some of the design
variables such as d, hm , t^, and tp on the
weight of the desired section is ex-
plained later on in this article. For a
minimum weight design, the engineer
obviously takes the largest depth that is
practically permissible. Similarly, he
attempts to obtain the lowest web width
that is admissible and the smallest
feasible flange thicknesses. In a mini-
mum weight design, the above variables
become inactive once the values are as-
signed as suggested above.

Another interesting method involving
the parallelogram-shaped interaction
diagram between (Pt /A) and (Pi elA d)
was developed by Somayaji. In this
method, the shape factor A, the effi-
ciency factor p k , and eccentricity ratio
(eld) are assumed and the section mod-

uli Z b and Zt required are found for the
given permissible stresses. The eccen-
tricity and prestress force P, are found
from the interaction diagrams. This
method involves an interesting concept
but it neither leads to minimum weight
design nor directly to the sectional di-
mensions.

In summary, it is clear from a review
of the literature that the existing meth-
ods for solving long span prestressed
concrete beams are iterative and fur-
thermore might not always lead to a
minimum weight design.

PROPOSED METHOD
This article suggests a procedure for

the direct minimum weight design of
long span prestressed concrete mem-
bers. The section evaluated exactly sat-
isfies the permissible stresses, faro,fbwv,
and f,,,, plus also the cover require-
ments d'.

This is accomplished by making use
of the relation between the known data
(permissible stresses f,,, fwp , f,,.p , and
effective cover d') and the unknown
data tit and Pc). For assumed or given
data, d, b, tb , and t, the area of the
section A that gives exactly the required
section modulus Zb for carrying mo-
ments M 4 and M,,, is also obtained in
terms of the unknown yr.

While expressing the parameters of
the cross section in terms of the un-
known efficiency factor Pc. advantage is
taken of the well-known relation be-
tween Zr„ A, pr; and f,. The solution of
the two expressions ofpG obtained from
the procedure given above leads to a
cubic equation in yt , the solution of
which when substituted in the corre-
sponding expressions gives the values of
p( , A, and P. The derivations of the
relevant expressions that lead to the di-
rect design of minimum weight section
are given on the following pages.
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Basic Equations

The four basic equations that govern the design of a simply supported prestressed
concrete member with varying tendon eccentricity are:

Pi 1A — Pfe 1Z +M I7, = fra--fa,,	 (1)

PtIA +P,e17b —M14=fpra --fn 	 (2)

	j P,IA — r P,el7t +M /4+M,,1Z =ft.. --fan	 (3)

	

'qPP IA+7)PP e14—M,,,17 —M4 /4=A.--L.,	 (4)

The mathematical symbols in Eqs. (1) to (4) are defined in the Notation section
(see Appendix) and are also graphically shown in Fig. 1.

Note that all the permissible stresses are assumed to be compressive and positive.
If any of the stresses fap or fbu, p are tensile, then a negative value should be
substituted in the relevant expressions. It was shown by Guyon' that, for long span
members, Inequality (1) would always be satisfied. In such cases, the eccentricity
derived from practical considerations as given by Inequality (5a) is usually adopted:

e -- yb — d'	 (5a)

Guyon' and Khachaturian2 have shown that the section which exactly satisfies the
equations obtained aflerexpressing Inequalities (2), (3), (4), and (5a) as equalities
and which possesses a higher efficiency factor PG or Pk would be the minimum
weight section. The required expressions for finding directly the sectional
dimensions of a minimum weight section are derived below.

For a simply supported member, the self weight moment M,, is given by:

MM . = C QUA	 (6)

The section modulus 4, A, and y, are related as follows:

zn=Pe..Yi
	 (7)

in which Guyon's efficiency factorpG is defined by:

PG = r21 (sbye) 	 (8a)

By definition, the loss factor is given by:

-n = Pe 1P,	 9)

The following expression can be easily obtained from Fig. 1(a):

Pe/A=ft.,Yb1d+ft-,Yt1d 	 (10a)

Noting that yb = d — yr, Eq. (10a) can be written as;

Pe/A =ft- — ({non — .far^v) y,/d	 (10b)

The expression below can be deduced from Fig. lb:

(5b)
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a)	 STRESS DIAGRAM	 b)	 IDEALISED SECTION	 c) BREAK -UP OF IDEALISED
SECTION

Fig. 1. Assumed beam section showing stress diagram and section breakdown.

Substituting Eqs. (6), (7), (9), (10b), and (5b), in Eq. (2), the following relation
between the unknowns PG and y, in terms of the known values of permissible
stresses, beam depth and the effective cover d' is obtained.

Pc = (C1 Yt2 + C2 Y1 + Ca )I(C l y r2 + g y,) (8b)

where

Ci = f Wn — fmp (11)

Cs = df+ (d—d')(&^, —f.11) (12)

C 3 =CQL2 nd— d(d—d')fur (13)

and	 g = d (f., — +? nrn) (14)

From Eqs. (2) and (4), the following expression for the section modulus Z„ is
obtained:

Zb = [M A + (1 — n)M„^1 1(rJ.fru,• -f) (15a)

Substituting farM^„ from Eq. (6) in Eq. (15a) yields:

Z, = MA ID + BAID (15b)

where

D j 71 fW — .ft,., (16)

and	 B = (1— ig) C QLZ (17)

The assumed section is given in Fig. 1b. Fig. lc is a breakdown of the beam
section given in Fig. lb which facilitates the computation of section properties.
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Fmm Fig. 1c:

	

A=A,+A 2 +A3	 (18a)

Taking static moment of areas about the top fiber of the beam section and equat-
ing it to the static moment ofthe total area ofthe section about the same fiber gives:

A i y 3 +As ys + A3 y3 = (A,+As+As)y,	 (19)

or	 A3 = [A, (ye — ys) + As (yt — ya )1 /(y9 — ye)	 (20)

From Eqs. (18a) and (20):

A [A, ( y9 —yi) + As(J9 — yz)] / (ys —yr) 	 (18b)

The moment of inertia of the assumed section is given by:

I=A 12+A2+A$ 12 + A,y '2+ A,J,2+A, yss—A y,2	 (21 a)'	 12 

Substituting for (Ay2 ) and As from Eqs. (19) and (20), respectively, the following
equation is obtained:

i _A, (d2 + 12 y r2 — 12 y j fir) ( y3 — ye) + ( tb2 + 12 ys' — 12 ys Yt) (Yr — si)

L	 12(y3—yr)

+ A Z I (t,2 + 12 y,2 — 12 r1, Nr) (ya — yr) + (t? + 12 yss — 12 ys yr)( y, — Jx) 1 	 (21b)
1	 12^s—yr)	 J

The moment of inertia should also be equal to the product of the bottom fiber
section modulus and the bottom fiber distance from the section center of gravity:

I =Zeye=Za(d–ya)	 (21c)

From Eqs. (15b), (18b), and (21c):

__ MA	8 A. (ys – y,) + As (Y3 Ja )
j	D + D	(^1s – Yd	

(d – yr)	 (21d)

Equating Eqs. (21b) and (21d), an expression forA 2 is obtained and substituting it
into Eq. (18b) and simplifying, the following expression for the area ofthe section is
obtained:

=	
Za^Jrs+[as–Za,(d+ys)]Ur L4s(as --Za,d)] 	 (18c)A 

ai Ye3 + (0 i – ar C.) yei + [C. ar (d + y3) – r1 1 4r + (y3 ths – C 4 a , d y3 )

where

Z =MID ID
	

(22)

ca l = 12 (ya –'12)	 (23)

02 = A, [d2 (fs — U4) + tis (y r —'1s) + too ('12 — Y1) — a1 (Yt — fa) (Y2 — y 1 )1	 (24)

01 = tr2 — tb x — a, (2 i/3 + '12 )	 (25)
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0s =2y3 tr2 —t42 (y2 +ya) —a , ya(2 ys+ya)	 (26)

05 = f t2 y3 — t 2 ys — y3 y2 a ,	 (27)

C, =BID	 (28)

From Eqs. (7) and (15b):

P„ = (M4 + B A)/(D y,A )
	

(8c)

Substituting the formula for A given by Eq. (18c) in Eq. (8c) which expresses p,
and equating the resulting formula to Eq. (8b) which also expresses pa and
simplifying, the following cubic equation in Y, is obtained:

{c7 C, –z (C1 F'1 + a, tz )} y + I a2 { C2 — C I (V3 + C4 )} + Z (C 1 03 — 9 01 — a l 04 )7 Yi
+ lag 4C3 –C4 (g–C 1 y3 )– y3 C2} +Z lg 03 — C 1 y3 05 — a l W8 )l y[

+ [ a, ye(C4 g– C3 )+ Zy (a,dC3 –g65 )]=0	 (29)
where	 0=C,(d +y3)–C2+9	 (30)

^b4 = C2(d+ys)–C9 –C 1 dr13	(31)

^bs = C3(d+ y3) – C2d y3	(32)

The solution of the cubic Eq. (29) gives the value of yr of the minimum weight
section that also satisfies the cover requirements. The efficiency factor p„ is ob-
tained by substituting the value ofy r obtained from Eq. (29) in Eq. 8(b).

Rearranging Eq. (8e):

A=MA ! (pG Dy, –B )	 (18d)

Substituting in Eq. (18d) the values of pa and yt derived above, the value of
cross-sectional areaA is obtained. Rearranging Eq. (I8b):

A2 = A (y3 — yt) — Al (y3 — yl)	 (33)
(ys — Y2)

Substituting the values of y, and A in Eq. (33), the area A2 is found. Rearranging
Eq. (18a):

A3 = A – (A, + AE )	 (34;

KnowingA, A„ and A2 , A3 can be obtained from Eq. (34). The flange widths can
now be calculated:

(35)

ho = bw+ A"	 (36)
tb

The eccentricity e and the prestressing force Pe are found by substituting the
value of yr in Eqs. (5b) and (lob), respectively. The proportioning of the idealized
section is now complete and the design details can he worked out.
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Computer Program

Based on the proposed method a
computer program was written in For-
tran IV to suit a Prime computer. A
simplified flow chart of the program is
given in Fig. 2. Readers interested in
obtaining a print-out of the program can
get a copy from PC I Headquarters.

PRACTICAL GUIDELINES
In this method, the permissible

stresses, span of beam, and applied
loading (excluding self weight) are
given. The loss factor, effective cover,
beam depth, web width, top flange
thickness, and the bottom flange thick-
ness are assumed, For the above data
(assumed as well as given), this method
gives the minimum weight section of
the beam. The various assumptions are
discussed below.

Effective Cover d'

Experience indicates that the effec-
tive cover d' should be of the order of
0.10d. It appears that the section that
gives a greater d' than the minimum
needed will be heavier than the section
that gives exactly the required d'. How-
ever, if the heavier section is adopted,
giving a iargerd' than desired, some ad-
vantage can be taken by increasing the
eccentricity to its practical limit and re-
ducing the effective prestressing force.
These aspects are further elaborated
upon in the design example given later
in this paper.

Beam Depth d
Frequently, the depth of a beam is

governed by clearance considerations or
architectural requirements. As a guide,
the depth can be chosen to be about
(1)20) x span for long span beams. This
criterion, however, is only a rough esti-
mate. If there are no restrictions, it is

obviously advantageous from an eco-
nomic viewpoint to choose a beam with
a fairly large depth.

Loss Factor

Prestress losses can be estimated from
past experience. Under normal condi-
tions, the loss factor is about 0.85 and
0.80 for post-tensioned and preten-
sioned concrete, respectively.

Web width b,,,

It is desirable to adopt a beam section
configuration that gives a relatively
large value of pc since an increase in pc
results in a decrease in the cross-sec-
tional area of the member. This be-
comes apparent after studying Eqs. (7)
and (8a). Consider the section given in
Fig. 1(b). For discussion purposes, as-
sume that the given section consists of
two sets of rectangles, one comprising
the web and the other the overhanging
portions of both flanges.

The value of PG can vary from 0.33 for
a rectangtilar section to a value as high
as 0.55 for a well-proportioned flanged
section. If the thickness of the web of a
flanged section is increased while
keeping the total area of the section con-
stant, the section efficiency Po moves
towards 0.33, i.e., the value corre-
sponding to a rectangular section, be-
cause the influence of the web area in-
creases, It follows, therefore, that a
minimum practical web thickness
should be adopted which can permit
easy placement and compaction of con-
crete. Guyon's' guidelines are:

When d < 30 in. (76 cm),
bu, = d17 to d18	 (37)

When d> 30 in. (76 cm),

b,, = 4 in. (10 cm) +-	 (38)

If some tendons pass through the web,
the following formula is suggested:
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b^ 40 + 2 covers + I c^ 	 (39)

where 0 is the diameter of the tendons
located in the web.

Flange thickness, t,, and tr

As was explained previously, the effi-
ciencyp6 of a beam section increases ifa
larger portion of the total cross-sectional
area is placed in the flanges as compared
to that of the web. The new flange area

will also have a relatively large static
moment. In such a case the efficiency
factor PG moves toward a value of 0.55.
This is possible if the flange thicknesses
are relatively thin.

The practical limits suggested for the
top flange are between 0.10 d to 0.15 d.
A larger bottom flange thickness is
sometimes required for easy placement
of prestressing tendons. This also re-
duces the bottom flange width. Note
that the bottom flange thickness is usu-
ally about 020 d.

DESIGN EXAMPLE
DATA: A prestressed concrete beam (see Fig. 3) with the following properties
and assumptions:

L = 75 ft or 900 in. (2286 cm)	 f mp = 1760 psi (1213.5 N/cm^ )
f^ = 6000 psi (4140 Nlcm $ )	 d $ 50 in. (127 cm)
f,p = –150 psi (- 103.4 NIcm2 )	 fh,^â _ –150 psi (-103.4 N/cm2)
fa i ,o = 2673 psi (1843 N/cm 2 )	 t, 7.5 in. (19.05 cm)
M, = 19 x 10 (in.-lb) (214.51 x 106 N-cm) to -t 9.0 in. (22.86 cm)

REQUIRED: Find the minimum weight section of this beam while keeping the
above constraints.

SOLUTION: Use the following eight steps together with the equations derived
in the paper to solve the problem.

Step 1 — Select suitable values for d, t, t b and b.
In accordance with the practical guidelines given in this article, the minimum

weight section with the constraints stipulated in the given data is obtained by
selecting:

d = 50 in. (127 cm), tG = 9.0 in. (22.86 cm), t, = 7.5 in. (19.05 cm)

The web width is the greater of:

b^ ? 50/40 + 4 = 5.25 in. (13.34 cm)

Assume that one 12/5-mm tendon will pass through the web and that the
diameter of the tendon is 1.417 in. (3.6 cm).

Then: b 	 50/40 + 2(1.417) + 1.417 = 5.50 in. (13.97 cm)

Hence, adopt b	 5.50 in. (13.97 cm).

Assume the beam is post-tensioned.

Then rf = 0.85 and d' – 0.1 d = 0.1 x 50 = 5.0 in. (12.70 cm)
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Fig. 3. Design example. Note: quantities in parentheses are in "cm" or "NIcm2."

Step 2 - Calculate the parameters C 1 , C2 , C 3, g, D, B, Z, and C.

Substituting relevant values in Eqs. (11), (12), (13), (14), (16), (17), (22), and (28),
respectively, the following values are obtained:

C, = (-150- 1760) = -1910 psi (-13.1695 N/mm 2 )
C2 = 50x1760+ (50-5)[1760-(-150)I

= 173,390 lb/in. (304587 N/cm)
C3 = 1/8 x 0.086806 x 9002 x 0.85 x 50 - 50(50 - 5)1760

-3,586,466 lb (---15952.6 x 103 N)
g = 50(1760-0.85x2673)

_ - 25,603 lb/in.(- 44831 N/cm)
D - 0.85 x 2673 - (-150) = 2422.05 psi (16.70 Nlcros)
B = (1 - 0.85) 1/8 x 0.086806 x 9002

= 1318.36 lb/in. (2308.45 N/cm)
Z = 19 x 1011/2422.05 = 7844.60 in? (128550 cm3)
C4 = 1318.36/2422.05 = 0.54432 in. (1.3826 cm)

Step 3 - Calculate the parameters a,, a, 0,, ¢2 , 43 , 4, 0s, and 4e.

Using Eqs. (23), (24), (25), (30), (26), (31), (27), and (32), respectively.
y, = 0.5 d = 0.5 x 50 - 25 in, (63.50 cm)
UQ = 0.5 t, = 0.5 x 7.5 = 3.75 in. (9.525 cm)
y, = d-0.5t8 =50-0.5x9.0-45.5 in. (115.57 cm)
A, = b,^ d = 5.5 x 5{1 = 275 crn2 (1774.3 cm2)

a, = 12(45.50 - 3.75) = 501 in. (1272.54 cm)
a., = 275 { 502 (45.50 - 3.75) + 7.52 (25 - 45.50)

+ 9.02 x (3.75 - 25) - 501 (25 - 45.50) x (3.75 - 25)}
_ -321.06x108 in. 5 (-33943.2 x 105 cm
= 7.51-9.0E-501(2x45.50+3.75)
= 47,494.5 in? (- 306435 ccm 2 )

4)a = -1910 (50 + 45.50) - 173950 - 25603
_ -381,957.5 lb/in. (-668808 N/cm)
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03 = 2x45.5 x 7.52 - 92 (3,75 + 45.50)- 501x45.50 (2x3.75 + 45.50)
- 120.70 x 104 in.3 (-1977.91 x 10° cm3)

4,, = 173950(50 + 45.50) + 3586466+ 1910 x 45.50 x 50
= 245.44x105lb(1091.72x105N)

0s = 7.5Ex45.5-9'x3.75-45.5x3.75x50
_ -83,227.5 in. 3 (-136.385 x 104 cm3)

c¢s = -3586466(50 + 45.5) - 173,950 x50 x 45.50
= -738.24 x 106 lb-in. (-8342 x 106 N-cm)

Step 4 -Calculate the coefficients of the cubic Eq. (29)

Coefficient of = -321.06 x 105(-1910)
- 784.69 { -1910(-47494.5) + 501(- 381,957.5 )}

= 850.851 x 106 lb-in.3 (62034 x 101 N-cm )

Coefficient ofyt2 = -321,06 x 10 5 (173,950 + 1910 (45.50 + 0.54432)}
+ 7844.60 (1910x120.70x10 4 - 25603x47494.5 -
501 x 245.44 x 105)
-963.231 x 10 11 lb-in! (-178365 x 10" N-cm4)

Coefficient ofy, = 321.06 x 105 {-3586466 - 0.54432(-25603 + 1910
x 45.50)
- 45.50 x 173950} + 7844.60 (25603 x 120.70x10'
- 1910 x 45.50 x 83227.5 + 501 x 738.24 x 106)

= 345.741 x 10" lb.-ins (162616 x 10" N-cm)

Constant term = -321.06 x 10 x45.50 (-0.54432 x 1910 + 3586466)
+ 7844.60 x 45.50 (-501 x 50 x 3586466 - 25603 x 83227.5)

= -380.462 x 10" lb-ins (-454524 x 10 14 N-cm")

Hence, the cubic equation that defines the center of gravity position of the
minimum weight section is:
850.851 x109y,3 - 963.231x10" y? + 345.741x10' 3 y, - 380.462x10' 4 = 0

- 113.208 y,2 + 4063.473 yt - 44,715.47 = 0

Step. 5 - Find the solution of the cubic equation.

The solution ofthis equation can be easily found by the iterative technique using
the remainder theorem:

Revised value _ Assumed value -(First Remainder
ofu^	 )	 (	 oft,	 )	 Second Remainder

The solution is:
yr = 21.0737 in. (53.5267 cm)
yb = 50 - 21.0737 = 28.9263 in. (73.4733 cm)

Step 6-Find the values of PG. A, A2 , A3 , b,, and bb from Eqs. (8b), (18d), (33), (34),
(35), and (36), respectively.

-1910 x21.0737' + 173950 x21.0737- 3586466
Pr.	 -1910 x21.07372 - 25603 x21.0737

= 0.5541
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19000 x 10'A =

	

	 = 704.683 in? (4546.615 cm2)
0.5541 x 2422.05 x 21.0737 - 1318.36

A2 
= 704.683 (45.50 - 21.0737) - 275 (45.50 - 25)= 277.253 in.

2 (1788.73 cm2 )
(45.50 - 3.75)

A 3 = 704.683 - (275 + 277253) = 152.430 in.2 (983.417 cros)

277.253bi = 5.50 +	 7 5 = 42.467 in. (107.867 cm)

152.430= 5.5 +	 9	 = 22.437 in. (56.990 em)0 

Step 7-Calculate P^, e, and M s,,, from Eqs. (10a), (5a), and (6), respectively.

P2 = 704.683 (1760 x 28.9263 - 150 x 21.0737) = 791,720 lb (3521571 N)
0.85x50

e = 28.9263 - 5.0 = 23.9263 in. (60.7728 cm)

= 1/8 x 0.086806 x 9002 x 704.683 = 6193496 lb-in. (6998.7 x 104 N-cm)

Step 8-Calculate Zb, Zt, frr° , ffra,frwa, and fw, from Eqs. (7), (Pry y ), (1), (2), (3),
and (4), respectively.

Zb = 0.5541 x 704.683 x21.0737= 8204.092 in.3 (134441 crn3 )

Z t = 0.5541 x 704.683 x 28.9263 = 9941.990 in.3 (162919 cm)

_ 791,720 _ 791720 x 23.9263 + 6193496

	

704.683	 9941.990	 9941.99

= 1123.512 - 1677.227 + 548.378 = -5.357< -150 psi
(- 3.68 N/cm2 ) < (- 103.4 N/cm2 )

= 791720 + 791720 x 23.9263 _ 6193496
f̂ iu 	 704.683	 8204.092	 8204.092

= 1123.512 + 2302 206 - 752.719
= 2672.99 = 2673 psi (1843 N/cmx)

= 0.85 (1123.512 - 1677.227) + 548.378 +
19x10°

9941.99
= 954.985 - 1425.643 + 548.378 + 1682279
= 1759.999 = 1760 psi (1213.5 Nlcmz)

f^„a = 0.85 (1123.512 + 2302.206) - 752.719 - 19x106
8204.092

= 954.985 + 1956.875 - 752.719 - 2309.143
_ -150.002 = -150.0 psi (--103.4 N/em2)
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DISCUSSION OF MINIMUM WEIGHT DESIGN

The design example indicates the var-
ious steps involved in determining the
direct minimum weight of long span
prestressed concrete members. Fol-
lowing this method, different designs
were evaluated by varying the effective
cover d and keeping the other input
data unaltered. From these results
curves were drawn as shown in Fig. 4
depicting the variation of A and P e ver-
sus different values of d'.

It can be seen from Fig. 4 that as the
value of d' increases, the sectional area
also increases. As explained earlier, the
practical value of d' is about 0.ld which
works out to 5 in. (12.7 cm) in this exam-
ple. The sections that give d' < 5 in.
(12.7 cm) are therefore not practically
admissible. The choice hence lies with
sections that give d' = 5 in. (12.7 cm)

and higher. It is therefore clear that the
minimum weight section S 1 , corre-
sponding to d' = 5 in. (12.7 cm), has the
least area. The prestressing force Pt of
the section S, with d' = 5 in, (12.7 cm) is
791,720 11) (3513140 N). This combina-
tion exactly satisfies the stresses fn,f, andfbty.

In practice, sections sometimes result
in a value of d' greater than that re-
quired. For example, assume that S Q is
such a section (see Fig. 4). This section
gives d' = 7.5 in. (19 cm), which is
greater than the required value of 5 in.
(12.7 cm). By adopting such a solution,
some savings in the prestressing force
can be realized. The prestressing force
would be 790,996 lb (3519950 N) as
shown in Fig, 5. In this solution the
stresses f,p and .f,,p are exactly satisfied

2.54 5.06 7.62 10.16 1270 1514 17.74 2032 72116 25.4 27.94 E t m

A jPt .Lb —	 q p}
n2

	

1210	 (cm) (N)

	

1000 •10X10
5
	—	 p OF MINIMUM WEIGHT	 645! 53.35.10

Fl l 791,7201b	 t	 SECTIONS
(WITH SEC ION S1 AND

	

5	 d'. 5.0 in)

	

600 -a X10	 790,9901bWITH SECTION S 2 AND d'.5.0 in)	 5162 35.:2

pt2 	 A OF MINIMUM WEIGHT1	

	

5	 SECTIONS	 I

	

600 6X7p	 2	 732.574(Cm)	 —	 3861

	

704.683 ( c rn)	 i	 —^I

4X10 ^--	 2 5611 1 7 7 9

	

2X70	 —-.--	 -}I -J 	 12 9018 90

0 1-0 2.0 3.0 L -0 5.0 6.0 70 80 9.0 10.0 110 in

Fig. 4. Variation of A and P, versus d' for minimum weight sections.
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while f,, and f wa are within the permis-	 of Pr and e can be found to satisfy the
sible limits,	 stress f,, in addition to ffp and ftwv.

For a given section S 2, a combination	 Their values would be 850,006 lb
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Fig. 5. Magnel diagram of minimum weight sections.
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(3780000 N) and 22.495 in. (57.1 cm), re-
spectively. It may be noted that an ec-
centricity of 22.495 in. (57.1 cm) gives a
d' value of 7.5 in. (19 cm). The pre-
stressing force could also he reduced by
adopting an eccentricity corresponding
to d' - 5.0 in. (12.7 cm) even though the
section used is S.

The above discussion therefore com-
pares two cases, namely, one that selects
the section S 1 , prestressing force P, and
eccentricity e corresponding to d' = 0.1
d = 5.0 in. (12.7 cm) while the other
chooses the section S 2 , prestressing
force PE , and eccentricity e correspond-
ing to d' = 0.1 d = 5 in. (12.7 cm). By
choosing the first solution a savings of
3.81 percent in concrete area can be
realized while the increase in pre-
stressing force would be of the order of
0.092 percent. Therefore, a significant
cost savings would accrue through the
adoption of a minimum weight section.

The Magnel diagrams for the sections
S, and S Z are shown in Fig. 4. The
cross-sectional details of the sections S,
and Se are also shown in the same dia-
gram. The Y-axes of the Magnel dia-
grams which show the variation of 11P,
are made to coincide with the respective
centroidal axes of the sections Sr and S2.
This enables the designer to visualize
whether or not the eccentricities of the
prestressing forces corresponding to
sections S, and Sa would fall inside the
section with required cover d' .
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CONCLUSION
The method given in this article de-

termines directly the minimum weight
section of long span prestressed con-
crete members. To save time the
method has been computerized. Though
the solution may require a somewhat
higher prestressing force than other
methods, this is offset by a relatively
large reduction in the volume of con-
crete. This reduced weight will in turn
bring savings in erection and transpor-
tation costs.
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APPENDIX — NOTATION
A	 = total cross-sectional area of see- f',p = permissible stress at bottom

tion fiber of section at working load
Al = cross-sectional area of web for f , = permissible stress at top fiber

full depth of section = b d of section at transfer
AE = cross-sectional area of over- fwe, = permissible stress at top fi-

hanging portions of top flange ber of section at working load
g =d(ft.,- ifMP)

A l = cross-sectional area of over- kr, = bottom kern distance = Zt 1A =

hanging portions of bottom rzly,
flange = (bb — b) tb ki = top kern distance = Z b /A = r$Iyb

a 1 = 12 (ya — yY ) L = span of beam
a 2 = A. (d2 (ya — y2 ) + tj(y l — y3 ) M,, = applied bending moment (ex-

+ ti (y2 — y,) — al (y, — yq ) x eluding self weight bending
(Y 2 — y i ) } moment)

B = (1— ri )CQL2 Af, = self weight bending moment
ba = width of bottom flange Pe = effective prestressing force
bt = width of top flange Pe = prestressing force at transfer
bu, = width of web Q = unit weight of concrete
C = constant depending on support r = radius of gyration of section

conditions (one-eighth for sim- tb = bottom flange thickness
ply supported condition) t, = top flange thickness

CGC = center of gravity of cross section Yb = distance of bottom fiber from
CGP = center of gravity of prestressing CGC

force yr = distance of top fiber from CGC
C1 =A.,̀ -fop y,y =0.5d
Cs = d f,r , + (d - d') (rain, – .fb,rn) ys = 0.5 t1

Ca =CQLt r,d–d(d–d')fr,,,p ya –d-0.5t,
C, =BID Z =MAID
D = n fop — fa,^, 4 = section modulus with reference
d = depth of cross section to bottom fiber of section
d' = distance from beam soffit to Z + = section modulus with reference

CGS to top fiber of section
L^'t = modulus of elasticity of con- i = yn/yt

crete at transfer 116 = (J 	 - f)/(-J 	 + f)
e = eccentricity of prestressing 7 = loss ratioPPIP1

force 0 = diameter of tendons located in
= specified compressive strength web

ofconcrete 0, = t o – t b – a, (2y. + Y2)
f ^a = actual stress at bottom fiber of $ 2 = C 1 (d + ya ) – C 2 + g

section at transfer 2Y3 t ! — t b ( y2 + y3) – a1 y3
fb,, a = actual stress at bottom fiber of (2y2 + y3)

section at working load = C2 (d + ya) – Ca –C 1 d ya
feu = actual stress at top fiber of see- dis = tiy3 – tb Y	 – ya Ja Ali

tion at transfer 0fl = C3 (d+ ya ) – C 2 d ys
f Q = actual stress at top fiber of sec- PG = Guyon's efficiency factor=

tion at working load r2/(ye yt)
far. = permissible stress at bottom Pk = Khachaturian's efficiency factor

fiber of section at transfer – r21d2
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