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F or computing curvatures and de-
flections of partially cracked mem-

bers, the effective moment of intertia
(Ie , I e) method l,1,3 provides a transition
value between well-defined limits in
the uncracked or I,) and fully
cracked (I, r ) states.

The method is applicable to short-
time deflections of non-prestressed and
prestressed members alike, and empiri-
cally accounts for the effect of tension
stiffening (increased stiffness due to
concrete in tension, including between
cracks). It is also applicable to indi-
vidual sections, to simple beams, and
between inflection points of continuous
beams; so that a practical solution that
takes into account the random distribu-
tion of cracks for all cases, including
non-uniform members, is available. The

method is similar to the approach+ of
determining the partially cracked de-
flection as an intermediate value be-
tween the uncracked (State 1) and fully
cracked (State II) deflections.

The I-effective method has been
adopted for the 1971 and 1977 ACI
Building Codes, 6 the 1971 and 1978
PCl Design Handbooks,? the 1973 and
1977 AASHTO Highway Bridge Speci-
fications,8 and the 1977 Canadian
Building Code .9 However, its applica-
tion to non-prestressed and prestressed
members has been somewhat different
in the past;$ with the live load IQ for
prestressed members determined from
the prestress plus dead load deflection
point, as shown in Fig. 1, and not from
the zero deflection point, as in the
non-prestressed case using the dead
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Synopsis
Unified 1-effective procedures for

partially cracked non-prestressed and
prestressed member curvatures and
deflections are summarized, Deflec-
tions computed by numerical integra-
tion of curvatures (using !e in the
fourth power equation), and also by
direct calculation (using ! e in the third
power equation) are illustrated for a

typical single-T beam designed as a
partially prestressed member in ac-
cordance with the ACI Code.

The numerical integration proce-
dure readily lends itself to computer
solution for both determinate and in-
determinate structures. Results by
the two methods are seen to be in
close agreement.

Deflection

Camber due
to Prestress

Fig. 1. Moment versus deflection for a partially cracked prestressed
member as previously computed by the 1, method.
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Fig. 2. Basic stress distribution diagrams for uncracked, partially cracked and fully cracked prestressed members, with
the location of the centroidal and neutral axes shown.
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(1)P. alone
(2) Zero curvature	 yE	 p ^.

(3) First cracking	 f	 ^p $

(4) Total load	 • E,Aa	 F-^^o

Ej.

MLAh–r,d!

Ec(I r^rs

Fig. 3. Strains and curvatures for the general case of a member loaded into the
cracking range.

load plus live load 1. The basic method
has been shown to apply to first loading
cases and to the envelope of repeated
loading cases for at least 313 beams and
slabs and 21 different authors."

In this paper, unified procedures for
computing partially cracked non-pre-
stressed and prestressed (with or with-
out non-prestressed tension steel)
member curvatures and deflections are

summarized and illustrated by an
example of a partially prestressed
member designed in accordance with
the ACI Code.6

The analytical and experimental de-
velopment of these unified procedures
is described in Refs. 10 and 11 in which
the procedures were found to apply to
load levels well beyond the usual ser-
vice load range.
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Fig. 4. Idealized moment versus curvature for a prestressed member loaded into the
cracking range, in which typical prestress, dead load and live load effects are shown.

UNIFIED PROCEDURES FOR PARTIALLY CRACKED NON-PRESTRESSED
AND PRESTRESSED MEMBER CURVATURES AND DEFLECTIONS

This case applies to the condition:

(MD +ML– Peen>Mr)
The basic stress distribution diagrams

for uncracked, partially cracked and
filly cracked members, with the loca-
tion of the centroidal and neutral axes,

are shown in Fig. 2 for a prestressed
member. The partially cracked state in-
cludes empirically the effect of tensile
concrete, including in small moment
regions, from the top of each crack to
the neutral axis, and also between
cracks, referred to as tension stiffening.
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Fig. 5. Idealized deflection coefficient, moment product versus deflection for
a prestressed member loaded into the cracking range, in which typical

prestress, dead load and live load effects are shown.

In this procedure, which includes the
effect of the normal force Fe in the cal-
culation of the cracking moment, the
fully cracked section is still taken in the
limit to be the lower bound state, as
shown in Fig. 2, that is, I. is the lower
limit of Ie and I e for both non-pre-
stressed and prestressed cases. The ef-
fect of any non-prestressed tension
steel in prestressed members is in-
cluded in the calculation of 1c,.. As de-

scribed in Refs. 10 and 11, the solution
for non-prestressed members follows
automatically in the unified procedure
by simply setting the prestress force
equal to zero.

For the general case of a member
loaded into the cracking range, the
strains and curvatures are shown in Fig.
3, and the idealized moment-curvature
and moment-deflection curves are
shown in Figs. 4 and 5.
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Curvature at a Particular Section
From distribution line (1) in Fig. 3,

the curvature due to prestress is given
by Eq. (1) and shown in Fig. 4:

	

= Pr e, IEcla 	 (1)

In the case of statically indeterminate
prestressed structures, 4p = Mbv/1;,.[0,
where M. = Me„ + Mb„ includes both
determinate and indeterminate mo-
ments due to prestress. Although the
remainder of the development herein
pertains to statically determinate cases,
the procedures are equally applicable
to indeterminate cases, The initial cur-
vature due to the prestress force at
transfer, P, is given by Eq. (2):

0 p = hp (E^/E !t ) (Pf IPP )	 (2)

The dead load curvature is given by
Eq. (3) at the time under investigation
(shown in Fig. 4), and by Eq. (4) ini-
tially:

	

OD' = M,IE . I D	 (3)

	

OD = Oo (E^/E)	 (4)

Distribution line (2) in Fig. 3 corre-
sponds to the condition of zero curva-
ture, as shown in Fig. 4 and defined by
Eqs. (5), (6) and (7).

From Ma + M,,1 – P. e p = 0:

	

Ma x =P,ep –Ma	(5)

and

OL1 = (Ap – lh	 (6)

In this uncracked region:

is also shown in Fig. 4 and refers to the
moment above zero, or the net positive
moment, required to crack the section:

Mr'r Ci = Jr + Pe

E,,I,	 L,.	 ErA.	
(8)

Solving:

M,,.=  M. + Pe ! 11 	 (9)
cE	 A. c2

The determination of the cracking
moment is further discussed in Refs. 3,
11, 12 and 13.

From distribution line (4) in Fig. 3,
corresponding to the total load, and
from Fig. 4, Eqs. (10) and (11) are ob-
tained:

M12 = ML – ML,	 (10)

6Lx = MLs IE, (.I ')z2	 (11)

where M,, is the total live load moment
at the section, ML , minus ML1 in Eq.
(5). The effective moment of inertia at a
particular section, l,, in Eq. (11) is
shown in Fig. 4 and computed by Eq.
(12). By definition: l. J0•11

a
Mrr

{I e)La = l i p +
MLZ

(12)
Mi r a

1–	 ICr --Io
^'1 L2

where M, r is computed in Eq. (9) and
ML z in Eq. (10).

From Fig. 4 and Eq. (6):

Total _ — r p +	 L1 + `i'L2 = Y'L2

(13)

OL1 = MLI /EC IF	 (7) and

where ML, is the part of the live load
moment necessary to produce the zero
curvature.

From distribution line (3) in Fig. 3,
corresponding to first cracking, Eq. (8)
is obtained. The cracking moment, M, r,

4Ll + CAL2	 (14)

Deflection of a Beam
Analogous to the above developments

forcurvatures, the corresponding deflec-
tions are shown in Fig. 5 and computed
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in the following equations. This figure
is presented in terms of K M versus
A in order that the single line with
Slope = E, Ia /L2 in Fig. 5 can be applied
to the deflection under different load
distributions (different K's), such as due
to prestress, dead load and live load in
a typical problem.

Analogous to Eqs. (1) to (4) due to
prestress and dead load:

Av = K, Pe ep L%IEc Jp	 (15)

A p = AD (E,IE,,) (P /P1,)	 (16)

Qp = K, MD L$ JE, Ia	 (17)

= AD (E^ IEes) 	 (18)

Analogous to Eq. (5), and as shown in
Fig. 5, for zero deflection:

KL ML, = Kp Pe e p – KD MD 	 (19)

and

A LA = App – A DD 	(21)

In this uncracked region:

A Ll = KL ML, L21E, Ig	 (22)

Eqs. (21) and (22) correspond to Eqs.
(6) and (7) for curvatures, respectively.

Analogous to Eqs. (10) and (11), and
as shown in Fig. 5, for the total load:

K, ML = KL ML, + KL M1! 	 (23a)

ML. = ML – MLl 	 (23b)

and

A l2 – KL ML L2IE e (le )rx	 (24)

The average effective moment of in-
ertia for a beam, l, in Eq. (24) is shown
in Fig. 5 and computed by Eq. (25). By

definition :1.2.3.10.11

(I)ES 

=(M,
cr	 I,, +

MLz

r	 r	 3

L 
1 – M"	 Ier = IQ 	 (25)

ML2

where M,, is computed in Eq. (9) and
ML! in Eq. (10).

From Fig. 5 and Eq. (21):

and
D,=OL, +ate 	 (27)

In the above equations for computing
deflections, the bending moments are
usually the maximum moments for sim-
ple spans and the maximum moments
between inflection points for continu-
ous spans, with the deflection coeffi-
cients, K, defined accordingly.

ML, _ (Kp IKL ) Pe e p – (&,1K,) MD (20) Total A = – An + A, + A L1 + Al = A,l
(26)

Also from Fig. 5:

DESIGN EXAMPLE - SIMPLE SPAN
PARTIALLY PRESTRESSED SINGLE-T BEAM

Design Details and Stress Analysis
The design conditions, properties,

loads and moments are shown in Table
1, and the design details are depicted in
Fig. 6. The design is shown to be satis-
factory based on the ACI Code allow-
able stresses for partially prestressed
members.

F, f,,A, = (1302 MNlm2 ) (0.0016 m2)

= 2.083 MN (468 kips)

I'e = fne A, = (1042) (0.0016)

= 1.667 MN (375 kips)

Concrete stresses at transfer:
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244 cm 4 cm

T
91 cm

20 cm

Unc•racked Centroid

26 m
A =16 cm 2 , e21.92 cm, e, =55.92 cm

Fig. 6. Single-T partially prestressed beam in the Example.

P^	 Ff ee	 p=	 p e^ MU

	

End f = - Ap 
+ S,
	 Midspan f = - A - 

{ 

S + SA9 	 P

- _ 2.083 + (2.083) (0.2192)
- (2.083) (0.5592)	 0.722=-5.77- 0.3612	 0.1117	 0.04248	 0.04248

= - 5.77 + 4.09 = - 1.68MNIm2
_ - 1.68 MPa (244 psi)

ptEnafp - - _ -- -
Ap	 S2

_ - 5.77 - (2.083) (0.2192)
0.04248

-5.77-10.75
_ - 16.52 MPa (2396 psi)

P PeMidspan f = - " + - - ` D

A.	 S t	 81

_ - 5.77 + (2,083 ) (0.5592)	 0.722
0.1117	 - 0.1117

=-5.77+10.43-6.46
_ - 1.80 MPa (261 psi)

=-5.77-27.42+ 17.00
- 16.19 MPa (2348 psi)

The above stresses are now com-
pared to the following ACI Code allow-
able stresses:

Compression at transfer
= 0.60f^r
= (0.60) (28)
= 16.80 MPa

(2437 psi)
Tension at transfer -- 3 ^^, psi

= 0.2491 7L MPa
= 0.2491 28
= 1.32 MPa (191 psi)
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Table 1. Design conditions, properties, loads and moments for design example.

Material Properties (ACI)

Steam cured normal weight concrete-Unit weight = 2320 kg/m s x 1.04 to include extra
weight of steel = 2410 kg/m 3 (150 pcf)

f^; = 28 MPa (4060 psi), ff = 34 MPa (5080 psi), f, = 1860 MPa (2701 C)
= 0.70 f,,, v 1302 MPa (189 ksi), Assume f,. = 0.80 f, 4 = 1042 MPA (151 ksi)

fr = 7.5 „T, psi = 0.6228 ^T, , MPa = 0.6228	 = 3.68 MPa (534 psi)
= 57,600 T, psi = 4783 jf,' r, MPa = 4783 Vr28 = 25,310 MPa (3.67 10, psi)

E, = 4783	 = 4783 35 = 28,300 MPa (4.10 x 10° psi)
Ep = 186,000 MPa (27.0 x 100 psi for strand), n = E p /E, = 186,000/28,300 = 6.57

Section Properties

eg = 65.92 cm, c:, = 91 - cg = 25.08 cm
e,=21.92cm,d=91-say 10= 81.00,e,=d-c 1 = 55.92 em
A. = 3612 em 2 ,13 = 2,800,200 cm4
S x = I,Ic 3 = 111,700 cm3 , S2 = Ilc2 = 42,480 cme
Considering only the rectangular flange in compression (neglecting the taper),

(244) (4) (a,, d - 2) = (6.57) (16) (81.00- acrd)
Solving, a,,d = 9.68 cm
I« = (244) (4)'/12 + (244) (4) (9.68 - 2)4 + (6.57) (16) (81-00 - 9.68)2 = 593,600 cm'

(USE) (versus correct value of 599,900 cm')

Loads and Moments

wn = (0.3612 m a ) (2410 kg/me ) (0.008907 kNlkg) = 8.54 kN/m (585 lb/ft)
Assume W L = 7.5 kNlm (3.07 kNlm 2 , 514 lb/ft. 64.1 psf)
!fin = wn L218 = (8.54) (26)218 = 722 kN-m (532 ft-k)
M, = WL L2 18 = (7.5) (26)2!8 = 634 kN-m (468 ft-k)
Total Gravity Load Moment = M D+L = 1356 kN-m (1000 ft-k)

Hence, the computed stresses at trans-
fer are satisfactory.

Concrete stresses after losses with live
load:

Midspanfi = - Pe + Pe e ° -
A,,	 S,	 S1

= _ 1.667 + (1.667) (0.5592) _ 1.356
0.3612	 0.1117	 0.1117

=-4.62+8.35-12.14
_ - 8.41 MPa (1220 psi)

Midspan f2 = -- 	 - pe e^	 + Mn+r.
Ag	 S2	 Sz

_ - 4.62 - (1,667) (0.5592) + 1.356
0.04248	 0.04248

-4.62-21.94+31.92
_ + 5.36 MPa (777 psi)

The computed stresses are again
compared with the following ACI Code
allowable stresses:

Compression after losses:
= 0.45f
= (0.45) (35)
= 15.75 MPa (2284 psi)

Tension after losses:
> fr = 3.68 MPa (534 psi) (Table 1)
< 12 \)Jr' , psi

< 0.9965 'f^ , MPa
= 0.9965 v'35 = 5.90 MPa (856 psi)

According to the ACI Code, the com-
puted stresses after losses are satisfacto-
ry, except that the live load deflection
must be computed by a bilinear partial-
ly prestressed method (partially cracked
section).
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Table 2. Numerical solution for design example
(Hand calculations by Newmark numerical procedurei4)

Midspan
WI	 I

Multiplier,
Description	 Beam	 Units

1.12= 13 m

3.25 n	 3.25 m	 3.25m	 3.25 in
•

Section No.	 0	 1	 2 	 3	 4	 -
el 	 21. 92	 30. 42	 38. 92	 47. 42	 55. 92	 cm
d = ep + c, = ea + 25.08 =	 47. 00	 55. 50	 64. 00	 72. 50	 81. 00	 cm
acr d	 6. 38	 7. 20	 8. 03	 8. 85	 9. 68	 cm
1,	 193, 500	 272, 900	 366. 100	 473. 000	 593, 600	 cm°

0p = ,Pe ep fE^ Ia [Eq. (1)]	 0. 461 1	 0. 6399	 0. 8187	 0. 9975	 1. 1763	 10-s Urn

dop (see Footnote 1)	 - 2. 080	 2. 661	 3. 242	 3. 629 x Dimen-
10;(	 sionless

Slope (starting with half 	 - 9.798 7.718 5.057 1.815 Dimen-
ofcenter value) sionless

Deflection, Aq	 0 9. 798	 17. 516	 22. 573	 24. 388	 3250 x
10-' mm

Deflection, Ar,	 0 31. 8	 56. 9	 73. 4	 79. 3	 mm

MD 	 0 315. 9	 541. 5	 676. 9	 722. 0	 kN-m
¢6p = MD /E^ Ifl [Eq. (3)]	 0 0. 3986	 0. 6833	 0. 8542	 0. 9111	 10-9 11m

/p 	Footnote 2)	 - 1. 265	 2. 190	 2. 745	 2. 930 x Dimen-
10-3	sionless

Slope (starting with half 	 - 7.665 6.400 4.210 1.465 Dimen-
of center value) sionless

Deflection, A.	 0 7. 665	 14. 065	 18. 275	 19. 740	 3250 x
10-e mm

Deflection, A	 0 24. 9	 45, 7	 59. 4	 64. 2	 mm

LI =Peer - I%fn [ Eq• (5)1	 365. 4	 191. 2	 107. 3	 113. 6	 210. 2	 kN-m
0 L, = ML1 IE,1,[Eq. (7))	 0. 4611	 0. 2413	 0. 1354	 0. 1433	 0. 2653	 10-311m
ML 	 0 277. 4	 475. 5	 594. 4	 634. 0	 kN-m
ML = ML - ML, IEq. 10)] - 365. 4	 86. 2	 368. 2	 480. 8	 423. 8	 kN-m
MIM", (see Footnote 3)	 - > 1	 0. 9571	 0. 7329	 0. 8315	 Dimen-

sionless
(M^/ML2 ) 	 - ? 1	 0. 839	 0. 289	 0. 478	 Dimen-

sionless
(I; )	 (Eq. 12)	 2. 800	 2. 800	 2. 445	 1. 231	 1. 648	 101 em*
Ors =Mr2 /E,Ue)r.s[Eq •(11)1 -0. 4611	 0. 1088	 0. 5321	 1. 3801	 0. 9087	 10-3 1/m
'>SL = OLI + 4irs[Eq. (14)] 	 0. 0000	 0. 3501	 0. 6675	 1. 5234	 1. 1740	 10-3 1/m

(see Footnote 2)	 - 1. 129	 2. 315	 4. 625	 4. 005 x Dimen-
10-e	sionless

Slope (starting with half 	 - 10.072 8.943 6.628 2.003 Dirnen-
ofcenter value sionless

Deflection, AL	0. 10. 072	 19. 015	 25. 64.3	 27. 646	 3250 x
10`3 mm

Deflection, A,	 0 :32. 7	 61. 8	 83. 3	 89. 9	 ruin

See notes on opposite page.



Uncracked Beam Deflection Computed by Numerical Integration of Elastic
Curvatures (MIEI 9). Cracked beam deflection computed by numerical

integration of curvatures using I (with 4th power equation) Fig. 4

The following sample calculations
pertain to Section 4 in Table 2:
aer d = 9.68 cm (3.81 in.)
(Calculation shown in Table 1)

1 ,. = 593,600 cm4 (14,260 In 4 )
(Calculation shown in Table 1)

p = Pe e,/Er Ia	 Eq•(1)

(1.667) (0.5592)
(28,300) (0.028002)

= 1.1763 x 10-3 Pin
(0.359 x 10-3 1/ft)

As shown in Footnote 1 of Table 2:

3.25

(0.9975+ 4x1.1763+ 0.997540 -3

= 3.629 x 10-a (dimensionless)

From Table 2:
Midspan Aa = 79.3 mm (3.13 in.)

which is exactly the same as the result
by the direct calculation method (next
section). The reason for this is shown in
Footnote 1 of Table 2.

MD = 722 kN-rn (532 ft-k)
(calculation shown in Table 1)

^n = Mn /E„ I,,	 Eq. (3)

0.722
(28,300) (0.028002)

= 0.9111 x 10-1 11m (0278 x 10- 3 1/ft)

As shown in Footnote 2 of Table 2:

3.25
I'D = 12

(0.8542 + 10 x 0.9111 + 0.8542)10 -3

= 2.930 x 10-3 (dimensionless)

From Table 2:
Midspan A'D = 64.2 mm (2.53 in.)

which is exactly the same as the result
by the direct calculation method (next
section). The reason for this is shown
in Footnote 2 of Table 2.

M,u, = Pe- MD	 Eq. (5)
= (1667) (0.5592) - 722
= 210.2 kN-m (155 ft-k)

^ l1 = M,, , IE Ig	 Eq. (7)

0.2102

(28,300) (0.028002)

= 0.2653 x 10-3 1/m
(0.0809 x 10-s lift)

	

f7	 PI
Mc, = r ' +	 °	 Eq. (9)

	

2	 AQ Cz

- (3.68) (0.028002) + (1.667) (0.028002)

0.6592	 (0.3612)(0.6592)

= 0.3524 MN-rn
= 352.4 kN-m (260 ft-k)

Mrs = M L - ML ,	 Eq. (10)

= 634.0 - 210.2
= 423,8 kN-m (313 ft-k)

( r IML2 )4 = (352.4i423.8)"
=0.8315"=0.478

(Ie )	 (Mcr)4
-_ Ia+

	 Eq. (12)
ML2

	

1	

(M.4 
Icr Iu

= (0.478) (2,800,200) +
(I - 0.478) (593,600)

= 1,648,400 cm4 (39,600 in,+ )

FrQm Newmark numerical procedure &a with incremental length = L/8:
1. }'or straight line curvature (h11EI) diagrams (the prestress case in the example), the following is exact:

= L18 loo + 4 4, + 42) ^s 
= L78 (41 + 44+ + 'Aa ), etc.

y	 fi

2. For 2nd degree parabolic curvature (MIEl) diagrams (the dead load case in the example), the following

is exact:	
- [.8 loo + 104 + 4_ ). 4 = 

L18 (0, + 10 4_ + 4w), etc.
12	 12

For most other cases, the equation is very accurate but not exact (the live load case in the example).
3. Beam is uncracked at the end (at the top under the negative moment). Use 1, at the end section.



1.2 - ML2 IEc '. a )L2
	 Eq. (11)

0.4238

(28,300) (0.016484)

= 0.9087 x 10-3 11m (0.277 x 10-31 /fl)

oL- 4JL1+4,L2	 Eq.(14)
(0.2653 + 0,9087)10-9

= 1.1740 x 10-a I/m (0.358 x 10 lift)

As shown in Footnote 2 of Table 2:

- 3.2.5

OL	 12
(1.5234 + 10 x 1.1740 + L5234)10-3
4.005 x 10-3 (dimensionless)

From Table 2:
Midspan A L = 89.9 mm (3.54 in.)

versus 89.1 mm (3.51 in.) by the direct
calculation method in the next section.
These results demonstrate the typical
close agreement (see Refs. I and 3)
between the two procedures for uni-
formly distributed live loading (and
similar but to a lesser degree for two or
more point loads per span) - using the
fourth power equation for I,' when
computing curvatures first and then
numerically solving for the deflections,
and using the third power equation for
I,. when computing deflections directly.

Direct Calculation of Untracked Beam Deflection.
Cracked beam deflection computed directly using

the average !e (with 3rd power equation) Fig. 5

Aa = Kj, Pe ep L 21E, I,o , e„ = e,	 Eq. (15)	 = KD MD L2/Er ID	 Eq. (17)

	

= Pe (ee - ee )L2 + Pe ee j 2 Ref. (3)	
_ (5148) (0.722) (26)2

12 Ee I,	 8E I,	 (28,300) (0.028002)

(1.667) (0.5592 - 0.2192) (26)2
(12) (28,300) (0.028002)

(1.667) (0.2192) (26)2
(8) (28,300) (0.028002)

= 0.0793 m = 79.3 mm (3.12 in.)

which is exactly the same as the result
by the numerical integration method in
the previous section. The reason for
this is shown in Footnote 1 of Table 2.

Solving Eq. (15) above, K. = 0.0997.
For uniformly distributed loading:

KA - K, = 5/48 = 0.1042

Checking the conditions of Fig. 5:
Kp Pe e„ = (0.0997) (1.667) (0.5592)

= 0.0929 MN-rn = 92,9 kN-m
(69 ft-k)

> K, Mn = (5/48) (722)
= 75.2 kN-m (55 ft-k)

= 0.0642 m = 64.2 mm (2.53 in.)
which is exactly the same as the result
by the numerical integration method in
the previous section. The reason for
this is shown in Footnote 2 of Table 2.

An = AD (Ee IEer)	 Eq. (18)
_ (64.2) (28,300/25,310)
=71.8mm(2.83in.)

ML1 = (KP IK4) Pe e, - (Kf IKL)MD,e,, = ee

= 0.0997 (1.667) (0,5592)
O.1U42
- (1.000) (0.722)	 Eq. (20)

= 0.I70 MN-m = 17OkN-m (125 ft-k)

41L ! = KL M,, L2iEe I,	 Eq. (22)

)2(5/48) (0.170) (26_ 
(28,300) (0.028002)

=0.0151 m = 15.1 mm (0.59 in.)

+

p = 4„ (Ee lEer) (P^ 1Pe)	 E9. (16) MU = ML - M LA	 Eq• (23)
_ (79.3) (28,300/25,310)(2.083/1.667)	 = 634 - 170
= 111 mm (4.37 in.)	 = 464 kN-m (342 ft-k)
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Me' , = 352.4 kN-m (260 ft-k)
(calculated in previous section)

(Mc,IML2 )2 = (352.41464)2
= 0.75953 = 0.438

/^	 r3

Mcr 1 +
1 M,

3
1	 h^ I« IQ Eq. (25)

1L2

= (0.438) (2,800,200) +
(1 – 0.438) (593,600)

= 1,560,100 cm4 (37,480 in.)

A r2 = K, M,. L2/E (t )L2	 Eq. (24)

(5/48) (0.464) (26)2
(28,300) (0.015601)

= 0.0740 m
= 74.0 min (2.91 in.)

Or = A LI + A L2	 Eq. (27)
= 15.1 + 74.0
= 89.1 mm (3.51 in.)

versus 89.9 mm (3.54 in.) by the nu-
merical integration method in the pre-
vious section. These results demon-
strate the typical close agreement (see
Refs. 1 and 3) between the two proce-
dures for uniformly distributed live
loading (and similar but to a lesser de-
gree for two or more point loads per
span), using the third power equation
for I, when computing deflections di-
rectly, and using the fourth power equ-
ation for Ie when computing curvatures
first and then numerically solving for
the deflections.

The ACI Code allowable deflections
for roofs and floors under live load are:

Roofs: L/180 = 26,0001180
= 144 mm (5.67 in.)

Floors: L /360 = 72 mm (2.83 in.)

Based on these limits, the design is
satisfactory for roofs but not for floors
(Computed A , = 89 mm and 90 mm by
the two methods).

CONCLUDING REMARKS
Unified I-effective procedures for

partially cracked non-prestressed and
prestressed member curvatures and
deflections have been summarized. The
analytical and experimental develop-
ment of these procedures is described
in Refs. 10 and 11. Both of the proce-
dures empirically account for the effect
of tension stiffening.

In this paper the application of the
unified procedures is illustrated for a
typical single-T beam designed as a
partially prestressed member in accor-
dance with the ACT Code, which re-
quires that deflections be computed.
The midspan live load deflection is
computed as 89.9 mm (3.54 in.) by the
numerical integration of curvatures, and
89.1 mm (3.51 in.) by direct calculation.

This demonstrates the typical close
(although not always that close) agree-
ment between the two procedures for
uniformly distributed loading using the
third power equation for I,, when com-
puting deflections directly, and using
the fourth power equation for I, when
computing curvatures first and then
numerically solving for the deflections.
Such results are consistent with previ-
ous results, r,3 particularly those of Ref.
1 for non-prestressed members in
which the two equations were initially
determined empirically.

The design example, analyzed by
these methods, is shown to be satisfac-
tory for roofs but not for floors, accord-
ing to the ACI Code allowable live load
deflections.
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APPENDIX-NOTATION
AD = area of gross section, neglecting

the steel
Ap = area of prestressing steel
4, c2 = distance from uncracked cen-

troid (gross section) to top, bottom
surfaces, respectively

d = effective depth of a beam (dis-
tance from compression face to
center of steel)

E, = modulus of elasticity of concrete
at the time the superimposed
loading, such as live load, is
applied; normally taken to be at
age 28 days

E^; = modulus of elasticity of concrete
at the time of initial loading, such
as at the time of prestress transfer

E^, = modulus of elasticity of pre-
stressing steel

e,,e, = eccentricity at midspan, end of
a beam, respectively

en = eccentricity of prestressing steel
f ,f = flexural stress in concrete at

top, bottom surfaces, respectivelyfpe = stress in prestressing steel corre-
sponding to the effective prestress
force, Pr, after all losses

= temporary stress in prestressing
steel at transfer (initial prestress)

= ultimate tensile strength of pre-
stressing steel

f^ = modulus of rupture of concrete
= compressive strength of concrete,

normally at age 28 days
= compressive strength of concrete

at the time of prestress transfer
ITT = moment of inertia of the fully

cracked section
Ie	 effective moment of inertia for

deflection
IB = effective moment of inertia for

curvature
(IQ) s , (4 )r. = effective moment of in-

ertia for curvature and deflection,
respectively, for the part of the
live load moment, MLR , corre-
sponding to a positive curvature
(concave upward), deflection
(downward)

19 = moment of inertia of gross section,
neglecting the steel

furr = moment of inertia of uncracked
transformed section

Kn , KL, , K„ = deflection coefficient for
dead load moment, live load mo-
ment, prestress moment, respec-
tively

L = span length
Mb„ = total bending moment due to

prestress
M b„= statically determinate moment

due to prestress = Peeg
Mbti = statically indeterminate moment

due to prestress
M'. = cracking moment (moment above

zero, or the net positive moment,
necessary to crack a beam), as de-
fined by Eq. (9)

MD , M, = dead load moment, live load
moment, respectively

ML , = part of live load moment corre-
sponding to zero curvature, deflec-
tion

M,, = part of live load moment corre-
sponding to positive curvature
(concave upward), deflection
(downward)

n = modular ratio
Pe = effective prestress force (afterlosses)
P, = initial prestress force, or prestress

force at transfer
S1 . SZ = section moduli of top, bottom

surfaces, respectively
W D , w L = uniformly distributed dead

load, live load, respectively
a = ratio of distance from centroid to top

surface to d
acr d = location of fully cracked centroid
ae d = location of partially cracked cen-

troid
ap d = location of uncracked (gross sec-

tion) centroid
4 = deflection
(A = curvature

= deflection, curvature due to
dead load

OD , 4o = fictitious deflection, curvature
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due to dead load using E,, (rather
than E, i ) in the calculation

AL , q5L = deflection, curvature due to live
load

AL1, &L, - part ofthe live load deflection,
curvature which, together with the
prestress camber, produces zero
deflection, curvature

= part ofthe live load deflection,
curvature corresponding to posit-

ive values (downward deflection,
concave upward curvature); also
the net or total deflection, curvature

Ap , 0p = deflection, curvature due to pre-
stress

ap ,p = Fictitious deflection, curvature
due to prestress using E r (rather
than E^ 1 ) in the calculation

fi = equivalent concentrated angle
change in Newmark procedure
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