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n recent years, interest in segmental
bridges has grown and their behavior

under applied loads has received much
attention. The Pennsylvania Depart-
ment of Transportation, with the support
of the Federal Highway Administration,
responded to this growing interest by
sponsoring the construction of an ex-
perimental segmental bridge as a part of
the 1 mile (1.6 km) oval shaped test track
which is operated by the Pennsylvania
Transportation Institute at The
Pennsylvania State University.

One of the objectives of this research
was to study the overload behavior in

order to establish actual safety factors.
This required loading the bridge to fail-
ure in addition to conducting theoretical
studies. An analytic procedure based on
the finite element method was de-
veloped to predict the complete load-
deformation response of the prestressed
segmental bridge. The girder was also
analyzed using the standard theoretical
analysis for prestressed concrete struc-
tures, which is a simpler method. The
theoretical results obtained by those two
methods were then compared with the
experimental results from the failure
tests.
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TEST BRIDGE

The general plan, elevation, and cross
section of the experimental bridge are
shown in Fig. 1. The bridge consisted of
two identical simply supported girders
with segments and joints numbered as
shown. Each independent girder con-
sisted of seventeen segments which
were tied together with longitudinal bar
or strand post-tensioning tendons plus
diagonal bar post-tensioning tendon.
The ducts containing the tendons were
grouted after post-tensioning. Steel
shear dowels were used to achieve
alignment during construction and to
transfer torsional moment after the gird-
ers were built. Epoxy was used as the
main jointing material between the
segments.

End diaphragms were introduced in
the end segments, which were ample in
size to take the substantial reaction
forces from the neoprene bearing pads
and torsional anchorages and to provide
room for the post-tensioning end an-
chorage plates. In addition, an opening
was made to allow easy access by re-
searchers to the inside of the box sec-
tion. An open longitudinal joint be-
tween the girders was selected to allow
an independent comparison of the two
girders. The overload tests were per-
formed on Girder B,

The segments for the experimental
bridge were cast individually at a fabri-
cation plant by the short line method in
one steel form with provisions for ad-
justments. They were then hauled about
100 miles (161 km) to the test track
facility where they were erected on
steel scaffolding-type falsework.

The curved box girder was designed
for longitudinal moment using straight
beam theory for the dead load, AASHTO
HS20-44 live loading, and prestress.
The design was made using allowable
stresses and checked for ultimate
strength. For transverse moment, the
segments were designed elastically as a
box frame with side cantilever flanges.

Synopsis
An experimental prestressed con-

crete segmental bridge was con-
structed and tested at the Pennsyl-
vania Transportation Institute of The
Pennsylvania State University.

The bridge was designed by the
Pennsylvania Department of Trans-
portation as two independent single-
span curved girders with a length of
121 ft (36.9 m). Each girder was com-
posed of seventeen segments. The
bridge was initially field tested at ser-
vice load levels and subsequently
tested for overloads when one girder
was tested to failure.

The incremental loading to failure is
discussed and these results are com-
pared with those obtained from a fi-
nite element analysis (SAP IV), which
models the cracking patterns and
material nonlinearities. In addition, the
results of classical simplified analyses
are compared with selected experi-
mental and finite element results.

Conclusions are given that relate to
the application of the research.

At the bottom of the webs the frame was
assumed to he simply supported. Each
girder was analyzed for torsion as a hori-
zontally curved beam with eccentric
loads. The cross section of the segments
was approximated as a box section with
the flanges neglected.

The design strength of the concrete at
28 days was 5750 psi (39.6 Nlmm 2). In-
termediate grade ASTM A615 reinforc-
ing bars with a specified minimum yield
stress of 40,000 psi (275 NImr 2) were
used for all mild steel reinforcement.
Post-tensioning steel bars with a
specified ultimate stress of 160,000 psi
(1100 NImm 2), or steel strand with a
specified ultimate stress of 270,000 psi
(1860 N/mm z), were used for all post-
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Fig. 1. General plan, elevation and typical section of an experimental segmental bridge.

tensioning tendons.
In order to take into consideration the

effect of time on the strength of con-
crete, concrete cylinders were tested
before the bridge was loaded to failure.
Some of these cylinders were tested for
compressive strength, static modulus of
elasticity, and Poisson's ratio, and others
were tested for splitting tensile strength.

Table 1 gives the properties for the con-
crete in Girder B at the time of testing.
Specimens of the 0.50 in. (13 mm) diam-
eter strands and of the 1.25 in. (32 mm)
stress steel bars were tested by the man-
ufacturer and the Pennsylvania De-
partment of Transportation. The results
are also given in Table 1.

Complete details and design criteria
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Table 1. Material properties.

Properties of concrete

Age (year) 4.5
Compressive strength (psi) 7,350
Tensile strength (psi) 646
Modulus of elasticity (psi) 5,232,000
Poisson's ratio 0.189

Properties of prestressing bars and strands

Bars Strands

Diameter (in.) 1.25 0.50
Yield strength (ksi) 156.5 256.0
Ultimate strength (ksi) 169.6 283.7
Modulus of elasticity (ksi) 30,555. 28,000.
Percent of elongation 5.5 6.4

Note: 1 in. = 25.4 mm; I ksi = 6.895 N/mm.=

for the test bridge can he found in the
final report on Research Project 72-9,
Penn DOT Publication No. 118.'

FINITE ELEMENT ANALYSIS

Modeling of Materials
Concrete in the bridge has complex

stress distributions resulting from a
number of sources. Success in analyzing
such a structure requires knowledge of
the deformational behavior and strength
properties of concrete under multiaxial
states of stress. Different models based
upon different theories have been pro-
posed for the stress-strain law of con-
crete under short-term loads. These are
based on plasticity, nonlinear elasticity,
model of microstructures, measure of
damage, endochronic theory of plastic-
ity, and mathematical functions. A com-
plete explanation of all these models can
be found in Ref. 2.

After examining these various models,
it was concluded that, until more ex-
tensive and appropriate investigations
become available, a type of model that
allows a direct inclusion of the experi-
mental data should be preferred.
Therefore, Kostovos and Newman's

model ,'- was chosen for the analysis of
the bridge.

Octahedral Stresses and Strains

It was assumed in this work that com-
pressive stresses and strains were pos-
itive and that v,, ar , and Q, represent
the maximum, intermediate, and
minimum principal stresses, respec-
tively. The orthogonal coordinate sys-
tem o, aZ , and a-3 , which defines the
stress space, was transformed into a
cylindrical coordinate system in whichz
coincides with the space diagonal (Q, =
Uq = o) of the original system, and r and
9 are the radius and rotational variables,
respectively, on the plane perpendicu-
lar to the z axis (octahedral plane), as
shown in Fig. 2.

The two coordinate systems are re-
lated by the following equations:

z=(a1 +Q2 +v3)/f = YWifo	 (1)

r=(11 3)x
•l 0-1 — O'2)2 + (Q8 — ( •,) 2. +(o- —Q^)s

= 3 To	 (2)

Q, + Qz — 2 63	
(3)cos O =

r ,^ 6
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Fig. 2. Schematic representation of the ultimate strength surface.

In these equations, rro and T„ are
known as the normal and the shear oc-
tahedral stresses, respectively.

Similarly, the normal (Eo ) and shear
(ye ) octahedral strains are defined as
follows:

	

eo = (E, + E E + e3 )/3	 (4)

yo = 7.F (E Z — E,) l + (Ep — E3)2 + ( E3 — E,)2
(5)

Here, €,, Ez, E;, are the strains in the
directions of the principal stresses. If
elastic behavior is assumed, the stress as
and strain Eq associated with volume
change are related by the bulk modulus
K, and the distortional quantities are
related by the shear modulus G as:

K =	 E 	 6
3(1 –2v)	 3Ea

E	 __ r„
G = 2(1+v)	 2y 	

(7)

For nonlinear materials, l(ostovos and
Newman used similar relationships, but
in this case, the moduli K and G are
functions of stress and strain, and can be
expressed as secant moduli in the form:

KR( a 0) =	 "ra	 (8)
3 E,, (cro )

2 yo(T0)	 (9)

Concrete in Compression

In their work, Kostovos and Newman
have shown that concrete compression
behavior and fracture characteristics
may be explained by the formation and
propagation of microcracks within the
concrete. Under applied loading, four
stages of behavior can be distinguished
in the stress-strain response for uniaxial,
biaxial and triaxial stress cases. Con-
sider, as an example, the stress-strain
curve for uniaxial compression which is
shown in Fig. 3.

As a first stage, consider the region up
to 30-60 percent of the ultimate strength
(shown as 45 percent in Fig. 3). In this
initial stage (Stage 1 in Fig. 3), micro-
cracks in addition to those preexisting in
the material are initiated at isolated
points where the tensile strain concen-
trations are the highest. However, these
cracks are completely stable. Localized
cracks are initiated but they do not
propagate.

A second stage (Stage II, in Fig. 3),
takes the region up to 70-90 percent of
the ultimate strength. As the applied
load is increased, the crack system mul-
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Fig. 3. Uniaxial stress- strain curve for concrete.

tiplies and propagates, but in a slow sta-
ble manner. If Ioading is stopped and
the stress level is maintained at a certain
value, crack propagation ceases. The in-
creasing internal damage, revealed by
deviation of the linear elastic behavior,
causes irrecoverable deformation upon
unloading. The start of such deformation
behavior has been termed "onset of sta-
ble fracture propagation" (OSFP).

A third stage (Stage III in Fig. 3)
applies up to the ultimate strength.
Interface microcracks are linked to each
other by mortar cracks, and void forma-
tion (dilation) begins to have its effect
on deformation. The start of this stage
has been termed "onset of unstable
fracture propagation" (OUFP). The
level is easily defined since it coincides
with the level at which the overall vol-
ume of the material becomes a
minimum.

A fourth stage defines the region be-
yond the ultimate strength. In this re-
gion (Stage IV in Fig. 3), the energy re-
leased by the propagation of a crack is
greater than the energy needed for
propagation. Thus, the cracks become
unstable and self-propagating until
complete disruption and failure occurs.

Similarly, the multiaxial behavior
model of Kostovos and Newman has

considered four stages which will be
explained in the following sections.

Elastic Concrete (Stage I) — Under
combined states of stress, the stress-
strain relationship is generally non-
linear. However, when stress is below
45 percent of the ultimate stress, the
material characteristics are unaffected
by the fracture processes explained pre-
viously, the deformation is recoverable,
and the stress-strain relationship is al-
most linear. Therefore, it is assumed
here that concrete is isotropic, homoge-
neous, linearly elastic, and that its
stress-strain relations are described
completely by two elastic constants,
Poisson's ratio (v) and Young's modulus
(F).

Inelastic Concrete (Stage II) — This
stage represents states of stress between
45 percent of the ultimate stress, which
has been termed the "onset of stable
fracture propagation" (OSFP), and 85
percent of the ultimate stress, which has
been termed the "onset of unstable
fracture propagation" (OUFP). In this
zone of behavior, Kostovos and Newman
consider deformations to be composed
of the following components:

1. A component dictated by the ma-
terials characteristics and unaf-
fected by the fracture process.'
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Fig. 4. Assumed stress-strain curve for concrete in tension.

2. A component expressing the effect
of internal stresses caused by the
fracture processes.

Relationships between o-o and eo , and
between To and ye have been expressed
using the experimental results. These
relationships were formulated as fol-
lows:

	

Eo = A ( •o)	 (10)

	

Y. = f2(zo)	 (11)

Then, the secant expressions of the
hulk and shear moduli, given by Eqs. (8)
and (9), can be calculated. After that, the
secant values of the modulus of elastic-
ityE and Poisson's ratio v were obtained
from the well-known formulas of linear
elasticity:

	

E=3K+G	
(12)

3K – 2G 	
(13)

2 (3K + G)

Inelastic Concrete (Stage III) — This
stage represents states of stress between
the OUFP and the ultimate strength
levels. In this zone, void formation be-
gins to have an effect. Therefore, the
deformations that occur in this stage are
considered to be composed of three
components: the two components ex-

plained in the previous section plus a
third component which expresses the
effect of void formation. ' The addition of
the void formation effect to the first two
components gives the total defor-
mations. Then, the secant values of the
modulus of elasticity E and Poisson's
ratio v were obtained following the same
steps explained in Stage II.

Inelastic Concrete (Stage IV) — This
stage represents states of stress beyond
the ultimate strength level. In this zone,
the volume of voids increases dramat-
ically, which causes rapid dilation of the
overall volume. At this point, it is evi-
dent that the specimen, or the concrete
element as a whole, can no longer be
considered as a continuum. However,
an attempt has been made to use the
work of Kostovos and Newman' con-
cerning the behavior of concrete beyond
the ultimate strength level. Here, the
effect of the voids beyond the ultimate
strength has been added to the defor-
mations at the ultimate level to obtain
the total deformations, that is:

E o = Eo + SEa	 (14)

Yo = yo + syo	 (15)

Here SE„ and 3y0 are the hydrostatic
and deviatoric components of the voids
deformations beyond ultimate, respec-
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tively. And, eo and yo are the hydrostatic hardening of the material was defined
and deviatoric components at ultimate, according to the experimental stress-
respectively,	 strain curve.

Concrete in Tension

For concrete in tension, it can he as-
sumed without significant loss of accu-
racy that linear behavior is obtained up
to cracking. Therefore, the stress-strain
relationship has been described by two
elastic constants, Poisson's ratio (p) and
Young's modulus (E). The tensile
strength for the concrete in triaxial ten-
sion, or in the tension-tension-compres-
sion quadrant, was taken to be equal to
its uniaxial tensile strength.

The concrete stress is zero at the
cracks, but it is not zero if averaged over
the distance between cracks. Thus, if
the concept of working with average
stress is considered, an unloading por-
tion of the stress-strain curve can be as-
sumed. No data are available concerning
the unloading portion of the curve.
Therefore, the stress-strain curve for
concrete in tension was taken as shown
in Fig. 4. The modulus of elasticity for
any tensile strain is taken as the secant
modulus for that point on the curve.

Modeling of the Cracked Elements

The stiffness of the cracked elements
was softened isotropically. This soften-
ing was taken into consideration by re-
ducing the modulus of elasticity (E) ac-
cording to the assumed stress-strain
curve for concrete in tension shown in
Fig. 4. Some shear stiffness was retained
in the cracked elements. Hand et al."
show that although retention of some
shear stiffness is necessary, the propor-
tion of shear stiffness retained, /3, is not
critical, i.e., various values of j3 resulted
in similarly good correlation with test
results,

Modeling of the Prestressing Steel

An elastic strain hardening model was
used in defining the material behavior
of the prestressing steel. The strain

Modeling of the Mild Steel
Reinforcement

The cross section of the bridge is
heavily reinforced with mild steel rein-
forcement. In order to account for its
existence, the mild steel reinforcement
was uniformly distributed throughout
the concrete elements, and new effec-
tive values for the modulus of elasticity
were established for individual regions
of the cross section, with each region
encompassing a portion of the cross sec-
tion where the reinforcing pattern was
fairly uniform,

General Technique Used for the
Nonlinear Analysis

Nonlinearity is caused solely by the
nonlinear form of the constitutive rela-
tions and failure laws of concrete and
steel. Strains are assumed to be small
and, thus, the strain-displacement rela-
tions are linear. Therefore, the problem
involves material nonlinearity only, and
a nonlinear solution must satisfy the
constitutive laws and the conditions of
equilibrium and compatibility within
an acceptable margin of error.

The procedure used for the analysis
was as follows:

(a) Discretize the structure into ele-
ments by introducing the finite element
grid, number the nodes, and number the
elements. The centroidal characteristics
of each element are considered in all cal-
culations to represent the average prop-
erties of that element. Apply an initial
load, and carry out an elastic analysis
using a linear finite element program
(SAP IV in this study) to obtain the
nodal displacements and element
stresses. Calculate the corresponding
principal stresses. Use a scaling factor to
raise the load level to cause first crack-
ing in an element or region of elements.
Then, linearly scale the nodal displace-
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ments and element stresses to yield
their respective values at the cracking
load of the structure.

(b) Modify the material properties of
the cracked elements to account for ten-
sion stiffening of the concrete. The load
is then increased by increments of
varying magnitude, with each cycle of
loading reflecting the changing prop-
erties of the materials.

The following computational steps
were involved in a typical cycle of
loading:

1. Increase the previous load by an in-
crement of loading (P t = P {_, +
Perform an elastic analysis for the
structure under load P t, using the up-
dated stiffness matrix at the end of the
previous load. That is, if [K ] f_, is the
updated stiffness matrix at the end of
loadP 1_,. Then:

{Pk = [K]1 -1 fo}<

where {P} ; and { A}, are the load vector
and displacement vector for general
system at cycle i, respectively. Calculate
nodal displacements {0}, and element
stresses.

2. Calculate the corresponding prin-
cipal stresses.

3. Check concrete cracking and in-
elasticity and check steel inelasticity.

4. Examine the stress level for each
inelastic concrete element Then define
the stage of behavior for each inelastic
element.

5. Modify the material properties of
these inelastic elements,

6. Modify the material properties of
the old and new cracked elements to ac-
count for tension stiffening of the con-
crete and modify the steel properties
using its experimental stress-strain dia-
gram.

7. Update the structure stiffness at the
end of the load P t, using the new mate-
rial properties in preparation for the next
load level.

This computational cycle was re-
peated until the ultimate load was
reached and the complete behavior of

the structure was determined in terms of
displacements, stresses, and crack pat-
terns for each desired load.

In checking for cracking, it is impor-
tant to note that when the calculated
tensile stress, v,, in any element is
higher than the ultimate tensile strength
of the concrete, ft , the stresses in all the
elements must be scaled down to re-
move the stress increment (v, – fe ), and
the Ioad and nodal displacements must
also be scaled down to yield their re-
spective values.

It is important to mention that the
stresses (forces) released from the
cracked elements in cycle i, for example,
will be redistributed to the neighboring
elements in the next cycle, cycle (i + 1).

Use of SAP IV
SAP IV is a finite element structural

analysis program for the static and dy-
namic response of linear structural sys-
tems. The program is written in FOR-
TRAN. The user's manuals describes the
logical construction of the program, the
analysis capabilities, the finite element
library and the input data.

Two of the elements were used for the
bridge problem. The three-dimensional
truss element was used to represent the
lumped prestressing tendons, and the
three-dimensional solid (eight-node
brick) element to represent the con-
crete.

Discretization of the Structure

Nodes and subdivision lines and
planes were located at positions where
there were abrupt changes in geometry,
changes in material properties, changes
in prestressing tendons, and points of
loadings. Figs. 5 and 6 show the longi-
tudinal and cross-sectional discretiza-
tion of the structure, respectively

The precise arrangement for the pre-
stressing steel was not modeled because
it would have required too many node
points. Instead, tendons were lumped
together and the cross-sectional areas of
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certain truss members were given dif-
ferent values along the beam, depend-
ing on the areas of steel lumped in each
division. The effective values of the
modulus of elasticity for these truss
members were used where appropriate.

Symmetry was used in the analysis of
the bridge with one-half of the total
structure represented by finite ele-
ments.

Prestressing Analysis

The material properties of concrete
and steel depend on the stress or strain
state of the material. The state of stress
in a prestressed concrete element is
produced by the prestressing forces and
toads applied to the structure. There-
fore, at any state of loading, stresses
caused by prestressing forces should be
calculated and added to those caused by
the applied loads in order to define the
material properties of the element.

The force that a tendon will exert
upon the structure is a function of sev-
eral variables. The most important of
these are the jacking forces, P, applied
at the anchors, losses of prestressing
force, and position and geometry of the
tendon. In this study, the effects of all
these variables were taken into account.
The time-dependent losses were calcu-
lated in detail according to standard

procedures 1 ° and the equivalent load
method 1 ° 1 ' was used to compute the
forces applied by the tendons on the
structure.

The effective prestress force after
losses are accounted for is called Pe.
These effective prestressing forces were
represented as nodal forces on the finite
element model. The effects of the
change in the vertical alignment of the
prestressing tendons and the horizontal
curvature in the beam axis were consid-
ered in this representation.

The initial stresses in the bars and
tendons, caused by the effective pre-
stressing forces Pe, were calculated by
dividing the force Pe + A P, in any bar,
by the cross-sectional area of that bar.
Here, is the force caused by elastic
shortening, and it was added to correct
for the elastic shortening effect which
takes place when the effective pre-
stressing forces are applied as nodal
forces on the finite element nodel.

Cases of Loading
The cases of loading needed in the

analysis procedure are defined as fol-
lows:

— Experimentally, the deflections
and surface strains due to live load (LL)
only were measured. Thus, to compare
these experimental results, theoretical
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deflections and surface strains due to
(LL) only are needed.

— To define the material properties
after any load increment, the total
stresses due to live load (LL), dead load
(DL), and prestressing force, P,, in the
concrete and steel elements, are
needed.

Therefore, two load cases, as shown in
Fig. 7, were used after each load incre-
ment. Load case I was used to find the
total stresses needed to define the mate-
rial properties. For concrete, the
stresses obtained from the results of load
case 1 were used directly to define the
material properties for the concrete
elements. However, for the steel, the
initial stresses caused by Pe + AP,.,
forces were added to those obtained
from the output of load case 1 to obtain
the total stresses in the steel due to Pe +
LL + DL. Here, the term A P, is added
to negate the elastic shortening effect
which occurs to the steel, due to P e, in
load case 1.

Deflections and surface strains due to
live load only were obtained by sub-
tracting the results of load case 2 from
the results of load case 1.

PROCEDURES FOR
ANALYZING PRESTRESSED

CONCRETE STRUCTURE

This procedure was used to calculate
moment-curvature relationships at dif-
ferent load levels. Theoretical deflec-
tions were then calculated by loading
the conjugate beam with the curvature
diagram. The girder was idealized as a
straight line structure which had the
same geometry as the centroid of the
cross section and torsion was neglected
in the analysis.

The following assumptions were used
in this analysis procedure:

1. Complete bond was assumed be-
tween tendons and concrete. Therefore,
changes in strain in the steel and con-
crete were assumed to be the same.

2. After first cracking, tension in the
concrete was neglected.

3. Strains at the various section levels
were assumed to be directly propor-
tional to the distance from neutral axis.

4. The actual stress-strain diagrams for
the prestressing bars and strands were
used in the analysis.
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5. At ultimate strength, the maximum
moments and curvatures were calcu-
lated using the rectangular stress distri-
bution for the concrete and an ultimate
strain of 0.00.3.

Up to First Cracking
The total moment causing cracking

was found by setting the concrete stress
at the bottom face, due to all loads plus
the prestress force, equal to the modulus
of rupture of the concrete.

For moments smaller than the crack-
ing moment, there was an uncracked
section and the stresses were in the
elastic range. The curvature was calcu-
lated front the strain diagram and stress
due to all loads plus prestress force cal-
culated using the combined axial force
plus bending moment equation. k°

After First Cracking
For cracked prestressed concrete

beams, calculation of stresses after
cracking is a complex matter. The neu-
tral axis location and effective section
properties depend not only on the
geometry of the cross section and the
material properties, as for reinforced
concrete beams, but also on the axial
prestressing force and the loading. The
axial force applied by the steel to the
concrete is not constant after cracking,
but depends on the loading and on the
section properties. Nilson[' has de-
veloped a method for calculating
flexural stresses in prestressed beams
after cracking. This method works for
stresses in the elastic and inelastic
ranges but a complete stress-strain dia-
gram for all materials must he known.

Ultimate Flexural Strength
The ultimate strength of the girder

was determined by the strain compatibil-
ity method using stress-strain diagrams of
the prestressing tendons. A complete ex-
planation of the strain compatibility
method has been given by Nilson. '5

BRIDGE TESTING

The Loading System
The bridge was tested with static

loading using the loading frames shown
in Fig. 8. The loading frame included
four hydraulic jacks. Directly above the
rock anchors, four openings for the jacks
were cut through the concrete bridge
deck. The jacks were hinge connected to
the steel loading beams at their top ends
and attached to the anchor assembly for
the rock anchors at their lower ends.
The rock anchors were drilled and
grouted approximately 75 ft (23 m) into
the ground, 20 ft (6 m) of which were in
sound rock. Each rock anchor was capa-
ble of resisting a load of 500 kips (2225
kN), which was equal to the capacity of
the loading beams.

Each loading beam consisted of two
27 x 114 wide flange beams placed on a
roller support at one end and a hinged
support at the other. The beams deliv-
ered the loads through 2 in. (51 mm)
thick steel plates to concrete pedestals
located over the webs to give a lon-
gitudinal bending type failure. The
loads were monitored by separate pres-
sure gages for each jack and verified
through strain readings on each ram.

Instrumentation
The bridge was instrumented to

monitor deflections, transverse rota-
tions, change in alignment, surface
strains in the concrete and forces in
diagonal and anchor tendons.

Deflections and Rotations

Deflections and rotations for all load
increments were measured using six
dial gages with two placed at each end
and two placed at midspan. All dial
gages measured the displacements in a
direction perpendicular to the bottom
surface of the girder.

After the girder started yielding, the
deflections were measured with an en-
gineer's level, which was set tip at a
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Fig. 8. The loading frame of the bridge.

distance from the girder, and two level
rods, which were permanently mounted
at the midspan of the girder.

Strains at Midspan

Strains at the middle of Segment 9B
were measured at each load increment
using metal foil electrical resistance
strain gages. This segment, which is at
midspan, was chosen because of the
large bending moment at that location.
The strain gages were placed on the
upper surface, the lower surface, and
both sides of the bridge girder as shown
in Fig. 9. Only longitudinal gages were
used since bending was of primary
interest. All strains were used with a
Model P-350 Budd Strain Indicator
using a half-bridge circuit with temper-
ature compensation gages.

Testing Procedure
A crack survey was made for the out-

side and inside of the girder before

overload testing began. Most of these
cracks were caused by temperature and
shrinkage. They were traced with black
felt-tipped pens to differentiate them
from those caused by live load.

The load was applied in increments of
100 kips (445 kN), one increment each
day. After each increment of loading, the
bridge was completely unloaded and
reloaded incrementally in the next day
of testing. The testing of the bridge was
completed in 9 days. For a typical day of
testing, the following steps were carried
out:

1. The pressure on the hydraulic rams
was released and the steel loading
beams were lifted up until there was no
contact between the loading beams and
bearing points on the concrete pedestals.

2. Initial readings were taken at zero
load for strains, deflections, horizontal
offsets, and elevations of the deflection
points on top of the girder.

3. The four rams were activated by an
electric pump, and the pressure read-
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Fig. 9. Locations of strain gages at middle of Segment 9.

ings were adjusted until the load level of
the previous day was obtained.

4. Readings of strain gages, dial gages,
horizontal offsets, and level rod read-
ings were taken for the applied load
level.

5. Cracks were cracked, traced with
red felt-tipped pens, identified with the
load at which they formed, and re-
corded. Hand magnifying lenses were
used in tracing the ends of the cracks.

6. On the next day of testing, Steps 1
to 5 were repeated, except that the load
in Step 3 was increased by 100 kips (445
kN).

Steps 1 to 4 were carried out before
sunrise in order to minimize the effect of
temperature on the readings, then the
crack survey was made during the day
with the live load still on the girder.

The bridge was loaded to failure on
the last day of testing. Ultimate load was
defined by crushing of the concrete. after
the prestressing reinforcement had
yielded and gone into the strain hard-
ening range. After careful examination,
there was no evidence of any shear or
bond failures.

COMPARISONS OF TEST
RESULTS WITH

THEORETICAL VALUES
The main purpose of this testing was

to study the elastic and inelastic be-
havior of Girder B. Here, the experi-
mentaI results are reported and com-
pared with the theoretical values. The
tests focused mainly on the determina-
tion of experimental deflection and
strains from which the stresses were
determined. Theoretical results were
obtained by the finite element method
and by the standard theoretical flexural
analysis of prestressed concrete struc-
tures. Numerous comparisons were
made between observed and calculated
quantities, but only a few will be re-
ported here. More comparisons are
available in a report by McClure, West,
and Abdel-Halim.'2

Deflections at Midspan
To obtain the total experimental de-

flection at any load, the permanent set
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was added to the measured deflection.
This was necessary so that all experi-
mental deflections were measured from
the same origin. Finite element deflec-
tions were obtained by subtracting the
deflections due to load case 2 from load
case 1 (see Fig. 7). The standard theo-
retical analysis procedure for prestressed
concrete structures was used to calcu-
late curvature at different load levels.
Theoretical deflections were calculated.
by loading the conjugate beam with the
curvature diagram.

The experimental and theoretical
midspan deflections are shown in Fig.
10. The figure shows good agreement
between finite element and observed
deflections with the finite element
model showing less stiffness than the
real structure. That is, under a given
load, the simulated structure deforms
more than the actual structure.

Fig. 10 also shows the results of the
standard analysis for prestressed con-
crete beams which shows good agree-
ment with experimental values up to

first yielding. The remaining part of the
curve was defined by two points, The
first point was the first yielding of the
bars and the second point was the ulti-
mate condition assuming that concrete
fails by crushing when the compression
strain reaches a value of 0.003. In this
part of the curve, the theoretical deflec-
tions are much larger than the experi-
mental ones.

Table 2 shows the observed, finite
element and the standard calculated
values for loads and deflections at first
cracking, first yielding of bars, and at
bridge failure, The first yielding load for
all solutions was taken to be equal to the
theoretical yielding load, and the corre-
sponding deflections were compared
accordingly. The percentage differences
between the observed and theoretical
values are also shown in Table 2.

Longitudinal Stresses/Strains at
Midspan

Finite element stresses were obtained

Ullimate Load

y • ^C7•
First Yielding '" ^'
of Bars	 i

-0-0	 Experimental

-.------Finite -Finite Element
/	 Frst Crack

—r--	 Standard Theory

Note:	 I in. = 25.4 mm,
I kip = 4.440 kN.

Fig. 10. Load -deflection diagrams of Girder B.
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Table 2. Observed, finite element, and calculated values of loads and deflections.

Stage
Load and
deflection

Observed
values

Finite
element
values

Percent
difference

Standard
calculated

values
Percent

difference

First Load (kips) 376.0 420.0 +11.70 439.0 +16.76
cracking Deflection (in.) 1.49 2.01 +34.90 2.79 +87.25

First Load (kips) 700.0 700.0 0.00 700.0 0.00
yielding Deflection (in.) 6.00 7.68 +28.00 5.29 -11.83

Failure Load (kips) 955.0 920.0 -3.66 901.() -5.65
Deflection (in.) 21.27 22.10 +3.90 43.49 +104.47

Note: 1 in. = 25.4 mm; 1 kip = 4.4471 kN.

Table 3. Observed, finite element and calculated strains at top surfaces.

Finite
Applied Observed element Calculated
load (P) strains strains Percent strains Percent
(kips) (. in,/in.) (s in./in.) difference (µ in./in.) difference

439 -254 -302 +18.90 -350 +37.80
600 -359 -509 +41.78 -521 +45.13
700 -449 -616 +37.19 -630 +40.31

Note: 1 kip = 4.448 kN.

by subtracting the stresses of load case 2
from the stresses of load case 1 (see
Fig.7), Then the longitudinal strains
were calculated using the generalized
Hooke's law for a three-dimensional
state of stress. Here again, the perma-
nent set strains should be added to the
measured strains in order to obtain the
absolute surface strains which should he
compared with the finite element
strains. However, permanent set strains
were not measured, and this was one of
the main reasons for the deviation in
strain results between the finite ele-
ment analysis and test results.

A comparison of measured and finite
element strains did show fair agreement
up to first yielding where permanent set
strains were small but did show a devia-
tion of results above first yielding where
permanent set strains were relatively
large. Strains increased almost linearly

up to the first cracking load of 376 kips
(1670 kN). At a load of 476 kips (2120
kN), the strain gages located near the
bottom became inoperative due to
cracks developing. 12.13

A sample for the experimental and fi-
nite element strains obtained is shown
by Fig. 11 at a load on the bridge equal to
476 kips (2120 kN), which is a load
below first yielding. The figure shows a
reasonable agreement between ob-
served and finite element strains. The
trend observed for deflections is sus-
tained here; that is, the experimental re-
sults are smaller than the finite element
results.

Based on the standard theoretical
analysis, compression strains at the top
surface of the girder were calculated at
loads of 439, 600, and 700 kips (1950,
2670, and 3110 kN). These strains were
compared with the average compression
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Fig. 11, Longitudinal surface strains at middle of Segment 9 for load of 476 kips (2120 kN).

strains obtained experimentally and by
the finite element method. The results
are shown in Table 3. This table indi-
cates that the finite element method
gives better agreement with the ob-
served results than does the standard
theoretical analysis. The same indica-
tion was obtained by the load-deflection
response (see Fig. 10). The percentage
differences between the observed and
theoretical values are also shown in
Table 3.

Cracking and Failure of the Bridge

In the first and second days of testing,
up to load P = 276 kips (1228 kN), there
was no visible cracking on the bottom
surface of.the bridge. In the third clay of
testing, at load P – 376 kips (1672 kN),
the first visible cracking was observed at
the bottom surface between the points
of loading. As the load was increased,
cracks increased in number, and those
between the points of loading widened
and extended toward the compression
zone. In the transverse direction, it was
noticed that cracks began at the inner
side of the girder and progressed gradu-
ally toward the outer side.

Nothing unusual was noticed until the
eighth day of testing, at load P = 876
kips (3876 kN), when two Io>icl sounds

were heard at different times and the
pressure gage readings dropped down
slightly. It sounded like a strand or bar
tendon had broken each time. At this
load, the cracks at Joints 8 and 9 opened
widely and extended upward toward the
top slab.

In the last day of testing, at load P =
945 kips (4203 kN), two events occurred:
first, a noise was heard and the deflec-
tion increased suddenly by 0.25 in. (6.35
mm); second, two loud sounds, simlarto
those which occurred at P = 876 kips
(3896 kN), were heard, Again, de-
flection increased suddenly by another
0.25 in. (6.35 min). Pressure reading
started to fall off, but reached a constant
value. As the load was slightly increased
to the failure load of P = 953 kips (4250
kN), the crack at one of the middle joints
(Joint 8) opened widely and the con-
crete in the compression zone crushed
and spalled on the surface. The mode of
failure of the bridge is shown in Fig. 12.
Upon inspection of Joint 8, it was found
that all the strands were broken and the
solid bars were holding the bridge in
place.

The finite element load at first crack-
ing was estimated at P = 420 kips (1868
kN) which is 11.70 percent larger than
the observed value, The cracking load
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Fig. 12. Mode of failure of the bridge.

calculated from conventional theory was
P = 439 kips (1953 kN) which is 16.76
percent larger than the observed value.
Also, the finite element load at failure
was estimated atP = 920 kips (4092 kN)
which is 3.66 percent smaller than the
observed value. The failure load calcu-
lated from conventional theory using
strain compatibility was P = 901 kips
(4000 kN) which is 5.65 percent smaller
than the observed value. These values
are given in Table 2.

With the failure load of 955 kips (4250
kN) on the girder, the ultimate live load
moment in the midspan section be-
tween points of loading was 26,024
kip-ft (35, 288 kN •m) for the 121 ft (36.9
m) simply supported span. If Girder B
takes two lanes of AASHTO HS20-44
design load plus 20.3 percent for impact,
the design live load moment would be:

2 (1901.3)(1.203)
= 4575 kip-ft (6204 kNnn)

The load factor for the live load would

then be 26,02414,575 = 5.69, assuming a
load factor for dead load equal to 1,00.

For a dead load of 4.514 kips/ft (65.86
kN/m), the maximum dead load moment
at midspan would be:

1/8 (4.514)(121)2
= 8261 kip-ft (11,201 kN•n)

The load factor for live load would
then he 134,285 - 1.3(8261)1/4575 = 5.15
if the load factor for dead load was con-
sidered to be 1.3 as recommended by
AASHTO. Both of these live load factors
exceed the 2.17 value recommended by
the current AASHTO specifications for
load factor design. The reason for the
excessive load factor for live load is that
extra steel was required in the girder to
satisfy allowable stresses under unfac-
tored loads.

Crack Patterns
Sketches were drawn for the crack

patterns for the inside and outside of
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Girder B, at load P = 776 kips (3453 kN),
and at failure. Fig. 13 shows the outside
crack pattern for the bottom of Girder B
at failure for the three segments nearest
midspan. At failure most of the cracking
occurred on these three segments. Dot-
ted lines on this figure represent the
cracks that occurred after load P = 776
kips (3450 kN) up to failure. The thicker
line indicates the joint that opened wide
and caused the failure.

It should be noted that all cracks be-
tween the points of loading were flexural
cracks, and as one goes farther from the
points of loading, the cracks bend more
in a diagonal direction, These are
known as flexure-shear cracks. It can be
noted also that at the maximum load
level, there was a tendency in segmental
structures to concentrate strains or cur-
vatures and yielding of tendons at one or
more joint locations. This is because the
mild reinforcing bars are not continuous
across the joint. For Girder B, at load P
= 945 kips (4200 kN), Joints 8 and 9
were wide open, and strain concen-
trations were approximately equal at
these joints. At the failure load of P =
955 kips (4250 kN), however, Joint 9
started to close, all strain concentrations
appeared at Joint 8, and a flexural type
failure occurred at this joint

CONCLUSIONS
The material reported in this paper

does not cover all of the topics that were
covered in the research study. More
comprehensive findings have been re-
ported by McClure, West, and Abdel-
Halim. 12,1 The following conclusions
can be made as a result of this study:

1. The results of the three-dimen-
sional finite element analysis, deflec-
tions and stresses (strains), which used
the Kostovos and Newman material
model for concrete, compared rea-
sonably well with experimental values
in the elastic and the post-cracking
ranges.

2. The experimental deflections and
strains (stresses) at midspan from lon-
gitudinal bending were always less than
the corresponding finite element values.
This indicates that the actual structure is
stiffer than that predicted by theory.

3. Cracking, first yielding, and ulti-
mate loads were found to be in good
agreement with their respective finite
element values.

4. The general analysis approach
based upon the finite element method
gives a great amount of information on
deflections, strains, stresses, and forces
in the prestressing steel, which can be
used in judging the behavior of bridges
if the structure is properly modeled.

5. Theoretical deflection and strains
(stresses) obtained by the standard
analysis procedure for prestressed con-
crete structures were found to agree
closely with observed values up to first
yielding, but after first yielding agree-
ment was not good.

6. The standard prestressed analysis
can be used to calculate loads, deflec-
tions, and strains (stresses), tip to the
first yielding of the steel, but after first
yielding, calculations are not reliable.
The ultimate load still can be conserva-
tively predicted by these standard
methods with a good degree of accu-
rac y.

7. A bending type failure occurred
between the points of loading. There
was no sign of a shear type distress near
the ends. The bridge had an adequate
but conservative factor of safety against
failure.

8. The standard prestress analysis was
used in the design of the experimental
segmental bridge for longitudinal
bending, shear, and torsion. For future
designs of this type, the standard pre-
stress analysis can he safely used. How-
ever, an analysis based on the finite
element method would also give safe re-
sults which are less conservative. Some
economy in design might be achieved
by using the finite element method of
analysis in the design.

122



ACKNOWLEDGMENT

This study covers a portion of a major
6-year investigation on an experimental
segmental bridge which was conducted
at the Pennsylvania Transportation In-
stitute located at The Pennsylvania
State University. The study was spon-
sored and funded by the Pennsylvania
Department of Transportation and the
Federal Highway Administration. The
contents of this paper reflect the views
of the authors who are responsible for
the facts and the accuracy of the data.
The contents do not necessarily reflect
the official views or policies of the spon-
sors.

REFERENCES

1. Koretzky, H. P., and Tschernelf, A. T.,
Final Report for Research Project No.
72-9 on the Design of an Experimental
Post-tensioned Segmental Concrete Box
Girder Bridge, Pennsylvania Depart-
ment of Transportation, Publication No.
118, September 1974.

2. Chen, W. F., Plasticity in Reinforced
Concrete, McGraw-Hill Book Company,
New York, N.Y., 1982.

3. Kostovos, M. D., and Newman, J. B.,
"Generalized Stress-Strain Relations for
Concrete," Jou rnal of the Engineering
Mechanics Division, American Society of
Civil Engineers, V. 104, No. EM4, Au-
gust 1978, pp. 845-856.

4. Kostovos, M. D., and Newman, J. B., "A
Mathematical Description of the Defor-
mational Behavior of Concrete Under
Complex Loading," Magazine of Con-
crete Research (London), V. 31, No. 107,
June 1979, pp. 77-90.

5. Kostovos, M. D., "A Mathematical De-
scription of the Strength Properties of Con-
crete Under Generalized Stress," Maga-
zine of Concrete Research (London), V.
31, No. 108, September 1979, pp. 151-158.

6. Kostovos, M. D., and Newman, J. B.,
"Behavior of Concrete Under Multiaxial
Stress," ACI Journal, V. 74, No. 9, Sep-
tember 1977, pp. 443-446.

7. Liu, T. C. Y., Nilson, A. H., and Slate,
F. 0., "Biaxial Stress-Strain Relations for
Concrete," journal of the Structural Di-
vision, American Society of Civil En-
gineers, V. 98, No. ST5, Proceedings
Paper 8905, May 1972, pp. 1-25-1934.

8. Hand, F. R., Pecknold, D. A., and
Schnobrich, W. C., "A Layered Finite
Element Nonlinear Analysis of Rein-
forced Concrete Plates and Shells,"
Structural Research Series No. 389, Civil
Engineering Studies, University of Il-
linois, Urbana--Champaign, August
1972.

9. Bathe, K. J., Wilson, E. L., and Paterson,
F. E., "SAPIV—A Structural Analysis
Program for Static and Dynamic Analysis
of Linear Structural Systems," EERC
Report No. 73-1I, College of Engineer-
ing, University of California, Berkeley,
June 1973, Revised April 1974.

10. Nilson, A. H., Design of Prestressed
Concrete, John Wiley & Sons, New York,
1978.

11. Lin, T. Y., and Burns N. H., Design of
Prestressed Concrete Structures, Third
Edition, John Wiley & Sons, New York,
N.Y., 1981.

12. McClure, R. M., West, H. Ff., and
Abdel-Halim, M., Overload Testing of
an Experimental Segmental Bridge,
Interim Report, Project 75-3, The
Pennsylvania Transportation Institute,
University Park, Pennsylvania, July
1982.

13. Abdel-Halim, M. A. H., Nonlinear Anal-
ysis of a Segmental Concrete Bridge by
Finite Element Method, PhD Thesis,
The Pennsylvania State University,
March 1982.

14, American Association of State Highway
and Transportation Officials, Standard
Specifications for Highwa y, Bridges,
Washington, D.C., 1983.

NOTE: Discussion of this article is invited. Please submit
your comments to PCI Headquarters by August 1, 1988.

PCI JOURNAL/November-December 1987 	 123


