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A steel tendon stretched between two
fixed points gradually loses a part

of its tension due to creep. The loss in
tension under constant strain, as in a test
in which the length of the tendon is
maintained constant after stretching,
will be referred to as the intrinsic relax-
ation.

The amount of intrinsic relaxation de-
pends on the ratio:

= og	 (1)f 
where
fpx , = initial stress immediately after

stretching (at time tt)
= strength of prestressed steel

When X is smaller than 0.5 the intrin-
sic relaxation is negligible, but its value
increases rapidly as A approaches 1.

A tendon in a prestressed concrete
member loses a part of its initial tension
due to the combined effect of creep and
shrinkage of concrete and steel relax-
ation; the loss in tension is associated
with shortening of the tendon. The re-

duction in tension caused by creep and
shrinkage has the same effect on the
magnitude of the relaxation as if the ini-
tial stress were smaller.

Thus, the value of relaxation to be
used in predicting prestress loss and the
associated deformations of prestressed
concrete members should be smaller
than the intrinsic relaxation obtained
from a constant length relaxation test.
Hence, one can write:

L = XrLr	 (2)

where
Lr = intrinsic relaxation which oc-

curs in a constant Iength ten-
don; units of L, are force/length2

L. = a reduced relaxation value to be
used in predicting prestress loss
and deformation of concrete
members

Xr = relaxation reduction coefficient,
a dimensionless value smaller
than unity

The purpose of this paper is to derive
an expression for the relaxation reduc-

82



tion coefficient X,. and demonstrate how
it can be used in practice for calculating
the loss of prestress and determining the
stress and strain after loss in a prc-
stressed concrete cross section.

Ghali et aIs used a step-by-step com-
putation procedure to derive values for
the relaxation reduction coefficient. The
present paper offers a more accurate
evaluation of X, based on an equation for
the intrinsic relaxation adopted from thr
CEB-FIP Model Code for Concrete
Structures, 1978 (MC-78). 2 A graph and
an equation are presented herein for the
coefficient Xr.

The relaxation reduction coefficient X r
is intended for use in practice as a mul-
tiplier to the intrinsic relaxation value,
Lr . The latter value may be based on test
results, often reported by steel suppli-
ers, or calculated by empirical equa-
tion.r

Most codes recognize the fact that the
magnitude of relaxation of a tendon in a
prestressed concrete member increases
with the increase in initial steel stress
and decreases with the increase of loss
due to creep and shrinkage. Some codes
give empirical expressions for the steel
relaxation as a function of the above
mentioned parameters.

The equation presented here for the
relaxation reduction coefficient X, in-
cludes all the necessary parameters and
is reached by rational derivation; hence
it is more accurate. The equation is sim-
ple to use without complicating the de-
sign calculations, A numerical example
is included in the paper, while the der-
ivation of the coefficient ,.is given in an
appendix.

SIGN CONVENTION
Tensile stress or tensile force in steel

or concrete is assumed positive. The
symbol AP represents a force increment
in concrete or in steel. A positive A P
indicates an increase in tension or a re-
duction in compression. Loss of tension
in prestressed tendons due to the corn-

Synopsis
Relaxation of prestressed steel in a

concrete member is of a smaller mag-
nitude than the intrinsic relaxation
which occurs in a tendon stretched
between two fixed points. A reduced
relaxation value should be employed
in the calculation of prestress loss and
the corresponding deformation.

In this paper a graph and an equa-
tion are presented for a relaxation re-
duction coefficient to be employed as
a multiplier to the intrinsic relaxation
for use in prestressed concrete de-
sign. A numerical example is included
to show how the method can be ap-
plied.

bined effects of creep, shrinkage and
relaxation, A P, is generally a negative
value.

The same effects produce a change,
AP,., in the resultant of the stress on
concrete; ] P, generally represents a re-
duction in compression, hence a posi-
tive quantity. Similarly, relaxation in
prestressed steel is a reduction in ten-
sion, hence a negative value.

INTRINSIC RELAXATION
The magnitude of intrinsic relaxation

depends on the value of A and also on
the quality of steel. MC-782 refers to two
groups of steel. The first group with
higher intrinsic relaxation includes
cold-drawn wires and strands. The sec-
ond group, with low relaxation, includes
quenched and tempered wires and
cold-drawn wires and strands which are
treated (stabilized) to achieve low relax-
ation.

In the absence of relaxation tests,
MC-78 gives a table which may be
used to determine the value of the in-
trinsic relaxation as a function of A (Fig.
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Fig. 1. Very long-term intrinsic relaxation of prestressing steels according to
the CEB-FIP Code.2

1). The values in the graph correspond
to the two steel groups mentioned above
and to aconstant length relaxation over a
period of 0.5 x 10" hours, After this pe-
riod the ultimate relaxation is consid-
ered to have been reached.

The following equations closely ap-
proximate the MC-78 values for the in-
trinsic relaxation:

fI. ns
+1(-0.4? when0.41

p 	 I

and	 (3)

L.T„= 0	 when X<O.4

where
L,m = value of the intrinsic relaxation

at time infinity
= 1.5 or ( 2 ) for steels of Groups 1

and 2, respectively
When the value of the intrinsic relax-

ation is known for a particular value of X,

Eq. (3) may be used to derive a value of
rt ,, for the type of steel considered. Sub-
sequent use of the same equation vary-
ing x gives the intrinsic relaxation for
any initial stress value.

The intrinsic relaxation at any instant
r depends upon the length of the period
(7 – ti ); where t, is the time at which the
initial tension is applied.

For any type of steel or initial tension,
the intrinsic relaxation at any timer may
be expressed as a product of the ultimate
intrinsic relaxation L,,, and a dimen-
sionless function of the period (r – t 1 ) in
hours:

Lr(r) =Lrm 
L 

1 Inl r 10t. + 1 	 (4)

when 0u(r`–t,)--1000

r — t ^
Lr(T) = Lr 	 (5j)0,5 x 10)C.2j

when 1000<(r– t,)-- 0.5 x 108
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^ w is the absolute value of change of
stress in the prestressed steel due to the
combined effect of creep, shrinkage and
relaxation. is the absolute value of
the intrinsic relaxation.

The parameter X is the ratio of the ini-
tial tension at transfer, f, to the ulti-
mate strength, f. With pretensioning,f„ t is the stress after elastic shortening.
The relaxation occurring during the pe-
riod between jacking and transfer (given
by Eq. (4)] takes place without change
in tendon length and thus should not be
subject to any reduction. With post-ten-
sioning, the value fp, i is the initial stress
at any section after a reduction of
the loss due to friction and anchor
set.

The relaxation reduction coefficient Xr

calculated by Eq. (7) or read from Fig. 2
applies for any type of prestressing
steel.

PRESTRESS LOSS
Fig. 3 represents a prestressed con-

crete cross section of a member with
prestressed and nonprestressed rein-
forcement. At time t i prestress is intro-
duced simultaneously with the load due
to the self weight of the member. The
instantaneous stress and strain distribu-
tions at t t can be determined by conven-
tional equations.

Due to creep and shrinkage of con-
crete and relaxation of prestressed steel,
concrete loses a part of its compression
and prestressed steel loses a part of its
tension. The nonprestressed steel gen-
erally picks up some compression. For
any period (t – t o ), where t > to , the
sum of the force increments in the three
materials must be zero; thus:

APB +A p" +AP,,,=0	 (9)

The symbol A P represents a force in-
crement, when positive it indicates an
increase in tension (or reduction in
compression). The subscripts c, ps and
ns refer to concrete, prestressed steel
and nonprestressed steel, respectively.

and

L, (r) = Lr„	 (6)

when (r– tt) >0.5x10'

Results of intrinsic relaxation tests are
usually reported for a period (r – t f ) =
1000 hours. Eqs. (4) to (6) may be ap-
plied to derive the relaxation value cor-
responding to (T – t,) = x or to any other
period of time. The equations are based
on experimental values reported in Ref-
erence 4.

REDUCED RELAXATION
Compare two tendons of the same

steel quality: the first in a constant
length relaxation test and the second
used in prestressing a concrete member.
Assume that the initial stress a-„m , at time
t, in the two tendons is the same. Be-
cause of creep and shrinkage of con-
crete, the stress at any instant r is
smaller in the second tendon compared
to the first. Thus, the relaxation in the
second tendon should be smaller than
the first.

This may be accounted for empirically
by considering that the relaxation in the
second tendon to be the same as the in-
trinsic relaxation for a reduced initial
tension equal to the actual tension
minus a fraction of the total loss of pre-
stress due to the combined effect of
creep, shrinkage and relaxation. This
fraction is 0.3 according to MC-78.2

A more accurate approach is to multi-
ply the intrinsic relaxation by a reduc-
tion coefficient Xr to obtain a reduced
relaxation value for a tendon in a pre-
stressed member [Eq. (2)]. For practical
application, the value X, may be read
from Table 1 or the graph in Fig. 2 or
calculated by a closely fitting equation:

xr =	 + 5.35)n	 (7)

where

Il	 r jL	(g)
Jnet
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Fig. 2. Relaxation reduction coefficient xr.

In the common case discussed above and nonprestressed steel, A:
AP, is positive while APB and AP,,, are

A„, + AA,	 (12)negative quantities. App =

The change in force on concrete, 0 PP,
and

during the period (t – t 1 ) due to creep,
shrinkage and relaxation may be calcu- ez
lated by the equation (derived in Ref. 7): a = 1 + 2	 (13)

r

'^ Pe = — f [C feet n. A., + s E, A x, + I+rAp, 1 in which

(10) e 	 = eccentricity, i.e., the distance
from Point 0, the centroid of

where concrete area (A„) to the centroid
of A.,

= f  	 1 I +	 (1 + XC)

_ i

(1I) r2 = I IA	 square of radius of 	 raJ
tionrofarea,A,

I, = moment of inertia of the cross
in which the total steel area, Aa,, is the section area of concrete about an
sum of the areas of prestressed steel,A,, axis through its centroid
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In Eqs. (10) and (11) the following ad-
ditional symbols are explained:

fce^ = instantaneous stress at y = e
(Fig. 3) due to prestressing and
dead load applied at time tt

E, = modulus of elasticity of the re-
inforcement, assumed the same
for prestressed and nonpre-
stressed steels

s = free (unrestrained) shrinkage
n = E,/E,. (t i ), where Et (t 1 ) = modu-

lus of elasticity of concrete at
time tj

C = creep coefficient = ratio of creep
of concrete to instantaneous
strain due to a stress introduced
at time t j and sustained, without
change in magnitude, up to
time t

x = aging coefficient depending
upon the ages of concrete at t i
and t; its value generally ranges
between 0.6 and 0.9. Tables and
graphs for the value of x are
available. 1.9.5 Note that X is used
as a multiplier to C, when a
stress increment is gradually
introduced during the period t,
to t.

Lb,. = reduced relaxation = intrinsic

relaxation multiplied by the re-
laxation reduction coefficient
Xr [Eq. (2)1

Eq. (10) expresses the loss of com-
pression in the concrete as the sum of
three terms inside the square brackets
which represent, respectively, the ef-
fects of creep, shrinkage and relaxation.
The dimensionless coefficient 63 ac-
counts for the fact that the loss due to
each of the three causes depends upon
creep and the cross section areas and lo-
cations of the prestressed and nonpre-
stressed steels.

Post-tensioned and pretensioned
members differ only in the calculation
of f,. With post-tensioning, the area of
cross section to be employed in calcu-
lating ff,t includes the cross section
areas of the nonprestressed steel and of
concrete, excluding the area of the pre-
stressing duct. With pretensioning, the
cross section to be used is composed of
the areas of concrete and of prestressed
and nonprestressed steels.

The value of the relaxation reduction
coefficient X r depends upon the total
loss, L,,, due to the combined effects of
creep, shrinkage and relaxation. Since
this is generally not known before Eq.

-4"Ans2

45TEEL

	 CENTROID CF A r 	 AE0

A	 fY	 0¢

p5

CENTROICAns	
tcei

l
OF TOTAL

Ast=Apsns

STRESSED CROSS SECTION	 STRESS AT TIME	 CHANGE IN STRAIN
t,	 IN THE PERIOD t -ti

Fig. 3. Definition of symbols used in Eqs. (10) to (18).
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(10) is applied, a value for x r must first
be assumed (for example 0.7) and later
corrected by iteration. A single iteration
is sufficient in most cases (see Exam-
ple).

The force P. acts on the concrete
cross section at eccentricity e; it pro-
duces increments in normal strain at
Point 0 and in curvature. Adding the
effects of A P. to creep and shrinkage
gives the total change in strain at Point
0 during the period (t - t o ):

	

AEp = C e, (ta) + S +	 P'	 (14)
E,, A,

Similarly, the change in curvature
over the same period is:

	

u = C0 (to)+ ]	 (15)
E, I,

where E, is the age-adjusted elasticity
modulus of concrete:

k	 E, (t i )=

	

	 (16)
1+xC

The age-adjusted modulus represents
the stress necessary to produce a total
strain (instantaneous plus creep) of
magnitude unity; the stress is here as-
sumed to be gradually introduced over
the period t i to t.

The change in concrete stress at any
fiber is:

AP`e y	 (17)

where y is the coordinate of the fiber
considered (measured downwards from
Point 0).

The change in stress in the pre-
stressed steel is:

L. =E( 0 (Aeo + ypr AO) + L,
(18)

where y„g is the y coordinate of the pre-
stressed steel.

The following numerical example il-

lustrates the application of the proposed
method.

EXAMPLE
Calculate the changes in stress and in

strain which occur in a period (t - t i ) in
the concrete cross section shown in Fig.
4a which is post-tensioned at time t,.

The following data are given.
Ec (t i ) = 4500 ksi; E, = 29 x 10s ksi;

initial force in prestressed tendon = 315
kips; bending moment due to dead load
introduced at the same time as the pre-
stress = 3500 kip-in.; free shrinkage s =
-240 x 10-s ; creep coefficient C = 3;
aging coefficient x = 0.8; intrinsic relax-
ation L,. = -17 ksi, strength of pre-
stressed steel, f ,, = 270 ksi.

Fig. 4b shows the strain and stress
distributions at time t 1 , immediately
after prestressing. These are calculated
by considering the initial prestress and
the dead load bending moment to be
applied on a transformed section of
modulus of elasticity E, (t ! ) and com-
posed of the area of concrete (less pre-
stressing duct) plus n times the area of
nonprestressed steel; where n = 29 x
103/4500 = 6.44.

The centroids of A. and A., are deter-
mined (Fig. 4a) as well as the following
geometric properties:

A, = 570.4 in.'; I, = 108000 in!; r 4 =
189.6 in 2; a = 1.36; Aat = 5.6 in.'; A„8 =

1.7 in.'
Assume a value for the relaxation re-

duction coefficient: Xr = 0.7.
Thus, the reduced relaxation [Eq. (2)]

is:

L.r = 0.7(-17) _ -11.9 ksi

Eq. (11) gives:

f3-^1+
1.36(6.44)(5.6) (1+0.8x3)}

570.4

= 0,7738

The change in force on concrete dur-
ing the period considered [Eq. (10)] is:
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iAns2'1.6 in2
2	 ^Sto)	 0,095ksi
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_4!
23.9	 =-4.04xI06

1  
CENTROID

in.	 in-I

48	 I
in.	 0.	 OF Ac	 E0(to)

CENTROID	 e_g,3 =-118x106

OF A st	 a
Ap=1.7in2	 fce1 =-0.681

ksi4	 DUCT AREA
=4.6 in2

2	 Ansi=2.3 in	 0.967 ksi

in

(a) CROSS-SECTION DIMENSIONS

	

	 (b) STRAIN AND STRESS AT ti,

IMMEDIATELY AFTER PRESTRESSING

-0009 ksi

LE	 452x10-6 0.1850 =-

Sao _

-6-I-597x10i

0-382 ksi
(c) CHANGES	 IN	 STRAIN AND	 IN STRESS	 DUE TO

CREEP SHRINKAGE	 AND RELAXATION

Fig. 4. Analysis of time-dependent strain and stress in a post-tensioned cross section.

A P, = -0.7738 [3(-0.681) (6.44) (5.6) AEa = 3(-118 x 10	 ) - 240 x 10-g
+ (-240 x 10-) (29000) (5.6

+	
102.8

+ (-11.9) (1.7)] = 102.8 kips 1324 (570.4)

The age-adjusted modulus of elastic- _ -458 x 101

ity [Eq. (16)] is: and the change in curvature [Eq. (15)]

4500 is:
Ec _	 = 1324 ksi

1+0.$x 102.8(8.3}
^cb = 3(-4.04 x 10- 6 ) +

The change in axial strain [Eq. (14)] 1324 (108000)

is: _ -6.15 x 10-R in.-$
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The change in stress in prestressed
steel [Eq. (18)] is:

L^ = 290001-458 + 18.1 (-6.15)]
x10-8 -11.9
= –28.4 ksi

To calculate an improved value of the
reduced relaxation, substitute fast _
315/1.7 = 185.3 ksi in Eqs. (1) and (8):

X= 185.3 -0.7
270

R 28.4-17 _0.06
185.3

Table I or Fig. 3 gives X r – 0.85.
Thus, a more accurate value of the re-

duced relaxation lEq. (2)] is:

L, = 0.85(-17) _ –14.4 ksi

Substitution of this value in Eq. (10)
gives r3 P, = 106.1 kips. The corre-
sponding changes in axial strain in cur-
vature and in stress [Eqs. (14), (15) and
(17)], are plotted in Fig. 4c. The change
in stress in prestressed steel [Eq. (18)] is
L„e = –30.7 ksi. Further iteration would
change these results only slightly.

It should be noted that the loss of ten-
sion in the prestressed steel (30.7 x 1.7 =
52.2 kips) is smaller in absolute value
than the loss of compression in concrete
(106.1 kips). The difference represents
the compressive force picked up by the
nonprestressed reinforcement.

CONCLUSION
A prestressed tendon exhibits relax-

ation in a concrete member of smaller
magnitude than the intrinsic relaxation
which would occur if the length of the
tendon was maintained constant. The
reduction in relaxation is caused by the
shortening of the tendon due to shrink-
age and creep of concrete. The relax-
ation coefficient X,. can be used in pre-
stressed concrete design as a multiplier
to the intrinsic relaxation in the predic-
tion of the prestress loss and the associ-
ated deformation.
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SI Conversion Factors
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1 kip	 = 4.448 kN
1 ksi	 = 6.894 MPa
I kip-in. = 0.1130 kN-m
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APPENDIX A - DERIVATION OF EXPRESSION FOR
RELAXATION REDUCTION COEFFICIENT Xr

The reduction coefficient for the re-
laxation of prestressed steel during any
period (t – t,) may be expressed as:

x(17cr = J a (1 –Sly)	
– 0.4	 ] d^

(A1)

where ,~ is a dimensionless time func-
tion defining the shape of the stress-
time curve for a constant length tendon
(Fig. Al).

The value t= equals zero when r = t,
and equals 1 when r = t; r represents
any instant between t i and t. Thus, the
intrinsic relaxation at any instant r is:

Lr (7) = [Lr (t )] S	 (A2)

Eq. (Al) is derived assuming that the
prestress loss due to the combined ef-
fects of creep, shrinkage and relaxation
varies with time according to the same
shape function i•'. Thus:

Lna (r) _ [Ln+ (t)] f	 (A3)

At any instantr (Fig. Al) the tendon in
the prestressed concrete member ex-
hibits relaxation as if its initial tension
were:

.fw, (r) = Lfna, – 	 (r) – Lr (r)j ] (A4)

The term in absolute value represents
a reduction in tension caused by the
shortening of the tendon; f^„ (r) is a re-
duced initial tension at the instant r.
Substitution of Eqs. (8), (A2) and (A3)
into Eq. (A4) yields:

fmi (r) = ffaf (I — u S)	 (AS)

Eqs. (3), (4) ]or Eqs. (5) and (6)] and
Eq. (A2) may be combined to express
the intrinsic relaxation. At any instant:

L,. (T) = —TllfAai (x — 0.4) S
when A -- 0.4 (A&)

and
Lr (r) = 0	 when x < 0.4 (A7)
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STRESS	 CONSTANT
i rr.lr_TU

T

Fig. Al. Stress versus strain in a constant length relaxation test. Definition
of the shape function e.

where af t = rq„ multiplied by the value
between square brackets in Eq. (4) or
(5), with T = t. Note that when (t — t0)>
0.5x106 , -qe= 71 «.

Employing Eq. (A6) or (A7), a differ-
ential of the intrinsic relaxation may be
expressed as:

di., _ — mfg, (x — 0.4)2 d^

when X 0.4 (A8)

and

dL,,=0	 whenX<0.4 (A9)

It can be seen from Eq. (A8) that the
differential intrinsic relaxation depends
upon the initial tension value f,,, and A

(= fa,,,lfp,,,). For the tendon in pre-
stressed concrete, the effective initial
tension at any instant is reduced by the
factor (1 — SZg). Thus, Eq. (A8) may be
used to express the differential reduced
relaxation by replacing f , by f and
substituting for the latter by Eq. (A5):

d LT = rlr fvgi (1 — fl) x
[X(1 — fl) — 0.4 j2df
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Table Al. Relaxation reduction coefficient Xr.

Ii A=0.55 a-0.6() a =0.65 A=0.70 A=0.75 A=0.80

0.0 1.000 1.000 1.000 1.000 1.000 1.000
0,1 0.6492 0.6978 0.7282 0.7490 0.7642 0.7757
0.2 0.4168 0.4820 0.5259 0.5573 0.5806 0.5987
0.3 0.2824 0.3393 0.3832 0.4166 0.4425 0.4630
0.4 0.2118 0.2546 0.2897 0.3188 0.3429 0.3627
0.5 0.1694 0.2037 0.2318 0.2551 0.2748 0.2917

when x(1-Sli)-0.4
(A10)

or

d  =0	 when X(1-(f)<0.4
(All)

Integration of each of Eqs. (A10) and
(A8) and then division gives the relax-
ation reduction coefficient Eq. (AI). The
equation applies when A(I -- Ili) -- 0.4.
This restriction can be accounted for

simply by replacing the upper limit of
the integral in Eq. (Al) by the smaller of
1 and the value [(A - 0.4)/(X )l.

The values of the relaxation reduction
coefficient xr in Table Al or Fig. 2 are
calculated by evaluating the integral in
Eq. (Al) for various values of a and Sl. A
closed form expression resulting from
integration of Eq. (Al) is rather lengthy.
Instead, Eq. (7) (obtained by curve fit-
ting) may be used for the relaxation re-
duction coefficient.
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APPENDIX B -- NOTATION

A = cross section area
C = creep coefficient = ratio of creep

which occurs during a period
(t – t f) to the instantaneous strain
due to a stress introduced at t f and
sustained constant thereafter

E = modulus of elasticity
e = eccentricity of the centroid of total

steel area measured downward
from centroid of concrete area

f = stress
I = moment of inertia
L r = intrinsic relaxation of prestressed

steel = change in stress in a tendon
_ stretched between two fixed points
L r = reduced relaxation (for prestress-

ing tendons in concrete)
n – E,1E, (to)

square of radius of gyration
of concrete area with respect to its
centroid

s = strain due to shrinkage when it is
free to occur without restrain

t = time
a =1 + (e21a-2)
A = an increment
e = strain
(A = curvature
X = aging coefficient for a specified

period tj tot. A value smaller than
unity used as a multiplier to the
creep coefficient when a stress in-
crement is gradually introduced
during the period (t – t1)

x,. = relaxation reduction coefficient
p = dimensionless coefficient defined

by Eq. (11)
rt = dimensionless coefficient em-

ployed as multiplier in Eq. (3) for
the intrinsic relaxation. The value
of depends upon the steel quality
and on the length of the period of
relaxation.

A = ratio of steel stress immediately
after transfer to ultimate tensile
strength

Q = stress
T = any instant of time

= dimensionless function varying
between 0 and 1 (Fig. Al)

St = ratio of total prestress loss minus
steel stress immediately after
transfer to steel stress immediately
after transfer

Subscripts

c = concrete
ps = prestressed steel
ns = nonprestressed steel
i = instant t i, the time of introduction

of prestressing
st = total steel area
u = ultimate strength
oo = very long period (exceeding 0.5 x

106 hours)
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