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ABSTRACT 

 

Despite more than a century of research effort, the problem of determining the 

shear capacity of a structural concrete member remains open for dispute. In 

this work, partial results of six prestressed I-shaped SCC beams with and 

without shear reinforcement subjected to a four-point bending test until failure 

are reported. The main investigated parameters are the amount of prestressing, 

the amount of shear reinforcement and the shear span-to-depth ratio 

respectively. During four of the six specimens, full-field three-dimensional 

displacements were discretely measured in both zones where a shear force 

occurs using two stereo vision digital image correlation (DIC) systems. 

Together with the experimentally observed failure load and mode, these 

displacement data were used to validate numerical finite element models 

(FEM). A good correlation was found between the experimentally observed 

and numerically predicted data. Based on the numerical output, an 

investigation of the mechanical behaviour is made. It was found that a 

significant portion of the applied shear force is carried in both upper and 

lower flanges. These contributions however are usually neglected in current 

codes of practice (i.e. Eurocode 2). 

 

Keywords: prestressed concrete, shear, finite element modeling, mechanical behaviour 
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INTRODUCTION 

 

After more than a century of research effort, shear remains an area within the scientific 

community where disagreement remains amongst researchers. From the early days of 

concrete construction, engineers have sought for models that accurately determine the shear 

resistance of a structural concrete member. In the earliest contributions, Ritter [1] idealized 

the flow of forces within a structural concrete member by means of a truss model, as shown 

in Fig. 1. The top and bottom chord resist the applied bending moment whereas the 

combination of inclined compressive struts and vertical tension ties resist the applied shear 

force. Important progress has been made in the last fifty years when, under the influence of 

the theory of plasticity, the truss model was extended and systematized. This model is easy to 

understand and is still the basis for current international codes of practice [2-4].  

 

Fig. 1. Truss model concept (compressive struts in dashed lines; vertical tension ties in full 

lines) 

Although the aforementioned truss model is highly didactic and easy to understand, it 

remains a (semi-)empirical design approach and thus not suitable for the entire spectrum of 

structural concrete members loaded in shear. Therefore, from the last thirty years onwards, 

research focus has shifted from (semi)-empirical design approaches towards more rational 

theoretical models based on equilibrium [5-8] and compatibility [9-11] conditions. These 

theories are based on the actual mechanical behaviour of structural concrete members loaded 

in shear. The aforementioned models however, are mainly intended for reinforced concrete 

rather than prestressed concrete and despite the large research effort, our understanding of 

shear in structural concrete members remains incomplete [12].  

This paper aims to make a contribution to a better understanding of the mechanical behaviour 

of prestressed concrete beams failing in shear by reporting the preliminary results of six tests. 

In the first part of this paper, the specimen properties, experimental setup and the observed 

structural behaviour will be reported. A comparison between the experimental results and 

analytical predictions using current codes of practice (i.e. Eurocode 2 [2, 13]) will be made. 

In the second part of this paper, the experimental data will be used to validate numerical 

predictions obtained from nonlinear finite element models (FEM). A good correlation was 

found between the experimentally observed data and the numerical predictions concerning 

failure load, failure mode and displacements. Finally, an investigation of the shear carrying 

mechanisms is made based on the FEM output.  
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EXPERIMENTAL INVESTIGATION 

 

SPECIMEN DESIGN 

 

In this study, the preliminary results of six prestressed concrete I-shaped beams are reported. 

Each specimen is labeled with the descriptive letter B followed by a number ranging from 

101 to 106. Each specimen is 7000mm (23.0 ft.) long, 630mm (24.8 in.) high and has a 

flange width equal to 240mm (9.5 in.). The web of each specimen is 70mm (2.8 in.) wide. 

All beams are provided with eight 7-wire strands at the bottom with a nominal diameter of 

12.5mm (0.5 in.) and two 7-wire strands at the top with a nominal diameter of 9.3mm (3/8 

in.). Shear reinforcement, consisting of single-legged stirrups with a nominal diameter of 

6mm (0.24 in.) and a center-to-center distance equal to 150mm (5.9 in.), is provided for all 

beams except specimen B103 and B106. At both ends of each specimen, splitting 

reinforcement is provided with a nominal diameter of 8mm (0.32 in.) and a center-to-center 

distance equal to 50mm (2 in.) The geometry and prestressing layout of all specimens is 

shown in Fig. 2. 

 

 

Fig. 2 (a) geometry, prestress and reinforcing layout of specimens B101, B102, B104 and 

B105; (b) geometry, prestress and reinforcing layout of specimens B103 and B106; (c) cross 

sections of specimens and reinforcement details; note: units in millimeter (25.4mm = 1 in.) 
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MATERIALS 

 

The concrete mixture was designed to have a characteristic cylindrical compressive strength 

equal to 50MPa (7252 psi). Cement was specified as CEM I 52.5 R ANN, whereas the coarse 

aggregate consisted of a 12mm (0.5 in.) maximum size gravel. Limestone filler and a high-

range water reducer were also provided. The concrete batch weights are listed in Table 1.  

 

Material Amount 

CEM I 52.5R ANN, kg/m³ (lb/yd³) 380.0 (640.5) 

gravel 2/12, kg/m³ (lb/yd³) 1097.5 (1849.9) 

sand 0/2, kg/m³ (lb/yd³) 684.5 (1153.8) 

water, kg/m³ (lb/yd³) 225.0 379.3) 

limestone filler, kg/m³ (lb/yd³) 150.0 (252.8) 

high-range water reducer, l/m³ (oz/yd³) 10.7 (197.2) 

 

Table 1. Concrete mixture batch weights 

 

 
Tensile tests were performed on the shear and splitting reinforcement to determine the 
modulus of elasticity Es, , the yield and ultimate stress, fym respectively ftm, and the strain at 
failure u. The same characteristics of the prestressing strands were taken from the 
manufacturer. The results are summarized in Table 2.  
 

Type  dp, ds
*
  Es  fym  ftm  u 

  mm (in.)  GPa (ksi)  MPa (ksi)  MPa (ksi)  %

top prestressing reinforcement 

7-wire  9.3 (0.38)  198 (28717)  1737 (252)  1930 (280)  5.20 

bottom prestressing reinforcement 

7-wire  12.5 (0.5)  198 (28717)  1737 (252)  1930 (280)  5.20 

shear reinforcement 

cold  

worked 

 
6 (0.24) 

 
203 (29443) 

 
608 (88) 

 
636 (92) 

 
2.73 

splitting reinforcement 

cold  

worked 

 
8 (0.32) 

 
203 (29443) 

 
542 (79) 

 
603 (88) 

 
5.97 

note: 
*
 nominal diameter of prestressing (subscript p) or conventional (subscript s) 

reinforcement 

Table 2. Reinforcement properties 
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SPECIMEN CONSTRUCTION 

 

Concrete mixtures were made in volumes of 2m³ (2.6 yd³). Each test specimen consists of 

just one mixture. Together with each specimen, concrete cubes (sides 150mm [5.9 in.]), 

cylinders (height 300mm [11.8 in.]; diameter 150mm [5.9 in.]) and prisms (length 600mm 

[23.6 in.]; sides 150mm [5.9 in.]) were cast to determine the mean compressive strength fcm 

based on cylinders, the mean compressive strength fcm,cube based on cubes, the mean secant 

modulus of elasticity Ecm and the flexural tensile strength fctm,fl. A summary of the results per 

specimen is shown in Table 3. All beams were cast into steel formwork which was removed 

in less than 24 hours after casting. The day after casting, demountable mechanical strain 

gauge points (DEMEC-points) were glued onto one of the side surfaces over 2000mm (78.7 

in.) to allow the determination of the immediate and time-dependent stress losses in the  

prestressing reinforcement. 

 

Each prestressing strand was tensioned the day prior to casting. The strand force was 

measured using a pressure transducer installed on the hydraulic jack. Each strand of 

specimens B101-B103 was given an initial prestrain equal to 7.5mS (m0 = 1488MPa [215.8 

ksi]) whereas each strand of specimens B104-B106 was given an initial prestrain equal to 

3.8mS (m0 = 750MPa [108.8 ksi]). While it is uncommon in the industry to reduce stress 

levels below the allowable, the stresses were varied to isolate the effect of varying the 

prestressing force while keeping the longitudinal reinforcement ratio constant. At the day of 

testing, it was found that the stress losses in the bottom and top prestressing reinforcement 

were approximately equal to 25% respectively 10% of the initial stress level.  

 

Specimen 
 fcm, MPa (ksi)  fcm,cube, MPa (ksi)  Ecm, GPa (ksi)  fctm,fl, MPa (psi) 

 [#
*
]  [#

*
,s

**
(s

***
)]  [#

*
]  [#

*
] 

B101  74.5 (10.8) 

[2] 

 81.8 (11.9) 

[3, 1.0 (0.2)] 

 n.a. 

 

 6.4 (928.2) 

[2] 

B102  71.8 (10.4) 

[2] 

 87.1 (12.6) 

[3, 6.3 (0.9)] 

 44.5 (6454) 

[2] 

 6.0 (870.2) 

[2] 

B103  95.0 (13.8) 

[1] 

 94.9 (13.8) 

[2] 

 41.1 (5961) 

[1] 

 5.1 (739.7) 

[2] 

B104  92.9 (13.5) 

[2] 

 74.3 (10.8) 

[3, 11.6 (1.7)] 

 47.9 (6947) 

[2] 

 6.6 (957.2) 

[2] 

B105  90.3 (13.1) 

[2] 

 87.3 (12.7) 

[3, 10.9 (1.6)] 

 40.6 (5888) 

[2] 

 5.3 (768.7) 

[2] 

B106  83.6 (12.1) 

[2] 

 86.9 (12.6) 

[3, 5.1 (0.7)] 

 42.2 (6120) 

[2] 

 7.6 (1102.3) 

[2] 

note: 
*
: number of tested specimens; 

**
 standard deviation, MPa; 

***
 standard deviation, ksi 

n.a.: not applicable 

 

Table 3. Concrete mixture properties 
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EXPERIMENTAL SETUP 

 

All specimens are subjected to a four point bending test, as shown in Fig. 3(a). The test are 

carried out in load-control using a hydraulic press (Instron, maximum capacity of 2.5 MN 

[562 kip]). The force from the hydraulic press is converted to two point loads by means of a 

steel construction profile (HEB 400) lying on two steel bearing cylinders. The total load is 

monotonically increased at 0.250kN/s (56.2lb/s), i.e. applied shear force rate equal to 

0.125kN/s (28.1 lb/s), until failure occurs. The distance between the support points is equal to 

5000mm (16.4 ft.) . The distance outside the support points is therefore equal to 1000mm 

(3.3 ft.) at each end. This setup firstly enables the authors to study shear outside the length 

needed for the prestressing force to gradually develop over the member’s height and 

secondly to prevent failure due to debonding of the longitudinal reinforcement. The shear 

span a, refer to Fig 3(a), is equal to 1600mm (5.3 ft.) for specimens B101 and B104 and 

2000mm (6.6 ft.) for beams B102-B103 and B105-B106. An overview of the investigated 

properties of each beam is given in Table 4.  

 

 
 

Fig. 3.  Experimental setup: (a) front view of experimental setup with indication of speckled 

zones (units in millimeter, 25.4mm = 1 in.); (b) vertical section of experimental setup (units 

in millimeter) and (c) horizontal section of experimental setup (units in millimeter) 
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Specimen 
 m0  a  w = Asw/(bws)

*
 

 MPa (ksi)  mm (ft.)  mm²/mm² (=in.²/in.²) 

B101  1488 (215.8)  1600 (5.3)  0.0027 

B102  1488 (215.8)  2000 (6.6)  0.0027 

B103  1488 (215.8)  2000 (6.6)  0 

B104  750 (108.8)  1600 (5.3)  0.0027 

B105  750 (108.8)  2000 (6.6)  0.0027 

B106  750 (108.8)  2000 (6.6)  0 

note: 
*
Asw: area of shear reinforcement; s: center-to-center distance of shear 

reinforcement 

Table 4. Overview of investigated parameters per specimen 

 

Apart from two linear variable differential transformers (LVDTs), refer to Fig. 3(a), full-field 

three-dimensional displacements were measured using the digital image correlation (DIC) 

technique for specimens B103-B106. As an optical full-field measurement technique, DIC 

has proven to be an ideal tool for a wide range of applications, including the identification of 

the mechanical material behaviour through inverse modeling [14, 15], structural health 

monitoring [16] and the study of the deformation characteristics of a wide range of materials 

[17-19]. The basic principle behind this technique is to calculate the displacements on the 

surface of an object by taking images of a random speckle pattern in the undeformed and 

deformed state. There are three main steps in the DIC method: (1) capture images, (2) 

correlation process and (3) post-processing phase. 

 

In the reported study, both zones where a shear force occurs, refer to Fig. 3(a), were 

investigated using two stereo-vision DIC systems. Each zone under investigation measures 

approximately 1500mm by 630mm. Each system consists of two charge-coupled device 

(CCD) 8-bit cameras (AVT Stingray F-201B; 1628 pixels by 1236 pixels resolution) with 

lenses having a focal length equal to 12mm mounted on a tripod. The cameras are located at 

a perpendicular distance equal to 2700mm (8.9 ft.) from the specimen under investigation, 

refer to Fig. 3(b)-(c). To ensure good lighting conditions and small exposure times, two 

500W quartz iodine lamps are provided per investigated zone as shown in Fig. 3(b)-(c). The 

image acquisition rate of each camera is equal to 2Hz with an exposure time of 20ms. All 

images of the four cameras are synchronized with the analog data of the hydraulic press (i.e. 

applied load and corresponding displacement of the press head). In this contribution, a subset 

based method is applied to correlate two speckle patterns. This method considers a pixel and 

its neighborhood in the undeformed image f and searches the same subset in the deformed 

image g by adopting a maximization routine for a similarity function. The formalism is 

clearly explained in [20]. In this study, maximization of the similarity function is obtained by 

adopting the zero-normalized sum of squared differences (ZNSSD) routine. The size of the 

subset can be chosen as desired prior to the evaluation. In this work, the dimensions of each 

subset were 27 by 27 pixels where each pixel has the physical dimension of approximately 

1mm (0.04 in.). Reproducibility of the speckle pattern is ensured by applying the same 

pattern onto each beam by using a stencil printing technique [21].  
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The correlation process and the post-processing of the data are done using MatchID 3D [20]. 

During the post-processing phase, strains are calculated by smoothing the measured 

displacement data over a certain zone to damp out the effect of noise and local uncertainties. 

This is a commonly adopted method [22]. Here, strains are averaged over 51 by 51 

displacement data points. Taking into account the step size of 3 pixels and the physical 

dimension of one pixel, this means that strains are averaged over approximately 150 by 

150mm (5.9 by 5.9 in.). This relatively large base length is justified when dealing with 

heterogeneous materials which exhibit a profound cracking pattern. For this setup, the 

standard deviation s of the in-plane horizontal U (x-axis) and vertical V (y-axis) 

displacement, refer to Fig. 3(a), are found to be equal to 21µm (8.3 10
-4

 in.)  and 11µm (4.3 

10
-4 

in.) respectively. The standard deviation of the out-of-plane displacement W (z-axis) is 

an order of magnitude higher, equal to 155 µm (6.1 10
-3

 in.), but also less important for the 

reported experiments since primarily in-plane displacements and deformations will occur. 

The standard deviation of the horizontal xx, vertical yy and shear strain xy is found to be 

equal to 112µS, 241µS and 140µS respectively.  

 

STRUCTURAL BEHAVIOUR 

 

In this section, the experimentally observed structural behaviour is reported. Fig. 4(a)-(f) 

show the measured load-displacement response curves for all investigated specimens. From 

Fig. 4(c), it can be seen that specimen B103 remains nearly perfectly linear elastic until 

failure. Since no shear reinforcement is provided, no redistribution of internal forces is 

possible after the occurrence of the first diagonal crack. The overall structural behaviour of 

specimen B106 deviates from perfectly linear elastic behaviour until failure due to the 

occurrence of bending cracks prior to the first diagonal crack leading to sudden failure. 

Specimens B101-B102 and B104-B105 exhibit a profound post-cracking behaviour until 

failure is reached. Table 5 summarizes the experimentally observed shear failure load and 

failure mode for each specimen. The experimental failure load can be compared to analytical 

predictions using the shear strength provisions found in Eurocode 2 (EC2) [2, 13]. According 

to EC2, the shear strength of a member with shear reinforcement is given by Eq. (1). Eq. (2) 

or (3) should be used to determine the sectional shear strength of a structural concrete 

member without shear reinforcement in a section which is uncracked respectively cracked 

due to bending (i.e. cracks starting from the bottom fiber of the beam). 

      
    
  

1

21

cw cm wsw
R R,s yw

f b z cot cotA
V V zf cot cot sin

s cot

   
  




   


  (1) 

 
2w

R R,c ct l cp ct

Ib
V V f f

S
            (2)

 
3 1

1 3
2 20 18 100 0 15 0 035 0 15

/

R R,c l cm cp w cm cp wV V . k f . b d . k f . b d  
 

       
 

  (3) 
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In the previous equations, Asw/s denotes the area of shear reinforcement per unit length; z is 

the internal lever arm; fyw is the yield stress of the shear reinforcement;  denotes the angle 

between the horizontal and the concrete compressive struts; cw is a coefficient taking into 

account the state of stress in the compression chord; 1 is a strength reduction factor for 

cracked concrete; fcm is the average cylindrical compressive strength; bw denotes the web 

width;  is the angle between the horizontal and axis of the shear reinforcement; I denotes 

the second moment of area; S is the first moment of area above and about the centroidal axis; 

fct is the concrete tensile strength; l is a factor taking into account the bond characteristics; 

cp represents the average compressive stress due to a normal force, i.e. prestressing force; k 

is a factor accounting for the size effect in shear; l denotes the geometrical longitudinal 

reinforcement ratio; and d is the member’s effective depth. 

In the aforementioned equations, average material strength properties and no partial safety 

factors were used to better estimate the actual failure load. The results of these calculations 

are also incorporated into Table 5. From these results, three preliminary conclusions can be 

drawn: (1) firstly, it can be seen that increasing the prestressing force while keeping the 

longitudinal reinforcement ratio constant, increases the shear capacity for specimens with 

(B101-B104 and B102-B105) and without (B103-B106) shear reinforcement. This effect 

however is neglected in the shear strength provisions of EC2 for concrete members with 

shear reinforcement.  

 

Fig. 4. Load-displacement response curves determined at 1200mm (3.94 ft.) from support 

point for specimens B101, B103-B106 and 2000mm (6.56 ft.) for specimen B102 
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Specimen 

 Experiment  Eurocode 2 [2, 13] 

 Failure load  Failure  

mode 

 Failure load  
Vu,exp/Vu,pred 

Failure  

mode  Vu,exp, kN (kip)  Vu,pred, kN (kip) 

B101  377.7 (84.9) DC
* 

 165.4 (37.2) 2.28 DT 

B102  321.6 (72.3) DT
** 

 165.4 (37.2) 1.94 DT 

B103  262.8 (59.1) DT  264.2 (59.4) 1.00 DT 

B104  281.8 (63.4) DT  139.5 (31.4) 2.02 DT 

B105  251.2 (56.5) DT  139.5 (31.4) 1.80 DT 

B106  179.7 (40.4) DT  87.0 (19.6) 2.07 DT 

note: 
*
DC: failure due to diagonal compression (crushing of concrete struts); 

**
DT: failure 

due to diagonal tension (yielding and rupture of shear reinforcement) 

Table 5. Failure load and mode properties, failure load predictions according to EC2 

 

 

(2) Secondly, it can be noted that EC2 predicts the correct failure mode for all specimens 

except for specimen B101. (3) Finally, it can be concluded from Table 5 that EC2 severely 

underestimates the shear capacity of all specimens with shear reinforcement and beam B106 

without shear reinforcement. A good estimate of the shear capacity is found for specimen 

B103. However, since the aforementioned beam remains nearly perfectly linear elastic until 

failure, it can be expected that the linear-elastic expression, given by Eq. (2), yields accurate 

results. 

 

 

FINITE ELEMENT MODEL ANALYSIS 

 

FINITE ELEMENT MODEL DEVELOPMENT 

 

In order to further investigate the discrepancy between experimental results and analytical 

predictions as reported in Table 5, a three-dimensional nonlinear finite element model is 

constructed of all specimens with shear reinforcement using the commercially available 

software package ANSYS v14. Due to double symmetry of the geometry and loading 

conditions, this model is reduced to a quarter of each specimen minimizing computational 

effort. The concrete matrix is modeled using hexahedron elements with eight nodes and 

linear shape functions. Each node has three translational degrees of freedom. Both 

longitudinal and shear reinforcement types are discretely modeled using truss elements. 

Experimentally determined material characteristics, as reported in Table 2 and Table 3, were 

used to define materials models for both concrete and reinforcement. To model failure of the 

concrete matrix in tension and compression and to account for multiaxial conditions on the 

uniaxial stress-strain behaviour, failure envelopes as proposed by [23] are adopted. Similar to 

the experiments, the simulations are carried out in load-control.  
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FINITE ELEMENT MODEL VALIDATION 

 

The ability of the FEM to reconstruct the experiment is validated by firstly assessing the 

numerically predicted failure load and mode. The results are summarized in Table 6. From 

Table 6 it can be seen that a good correlation is found between the experimentally observed 

and numerically predicted failure load. The failure mode is correctly predicted for all 

specimens except for beam B101. Fig. 5(a)-(d) show the experimentally observed cracking 

pattern at failure and the location of the shear reinforcement.  

 

Specimen 

 Experiment  FEM 

 Failure load Failure  

mode 

 Failure load 
Vu,exp/Vu,pred 

Failure  

mode  Vu,exp, kN (kip)  Vu,pred, kN (kip) 

B101  377.7 (84.9) DC
*
  355.6 1.06 DT 

B102  321.6 (72.3) DT
** 

 316.3 1.02 DT 

B104  281.8 (63.4) DT  274.5 1.03 DT 

B105  251.2 (56.5) DT  258.0 0.97 DT 

note: 
*
DC: diagonal compression failure; 

**
DT: diagonal tension failure  

Table 6. Comparison between experimental and numerical failure load and mode 

 

 
 

Fig. 5. Cracking pattern at failure, location and axial stress level of shear reinforcement at the 

numerically predicted failure load (‘+’ indicates location where yield stress is exceeded) (a) 

B101; (b) B102; (c) B104; (d) B105 
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Note that only the side where failure occurred, is shown in the aforementioned Fig. 5(a)-(d). 

The grey value of each reinforcement element represents the numerically predicted axial 

stress level at failure. These stress levels correspond well with the location and angle of the 

cracking pattern.  

 

Finally, the finite element model output can be validated by comparing the experimentally 

observed and the numerically predicted displacement data, both in the time and space 

domain. In Fig. 6(a)-(d), both the numerical and experimental load-displacement response 

curves, as reported earlier in Fig. 4(a)-(b) and Fig. 4(d)-(e), are shown. Fig. 7(a)-(d) show the 

experimental and numerical horizontal and vertical displacements for specimen B104 at 95% 

of the experimentally observed failure. Similar results were found for other specimens. From 

Fig. 6(a)-(d) and Fig. 7(a)-(d), it can be concluded that the numerical model is capable of 

reconstructing the nonlinear behaviour due to cracking of the concrete matrix and subsequent 

yielding of the reinforcement. 

 

 
 

Fig. 6. Comparison between experimental and numerical load-displacement response curves: 

(a) specimen B101; (b) specimen B102; (c) specimen B104; (d) specimen B105 
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Fig. 7. Contour plot of experimental (a,c) and numerical (b,d) horizontal (a,b) and vertical 

(c,d) displacements for specimen B104 at 95% of the experimentally observed failure load as 

a function of the horizontal and vertical coordinate (note: 25.4mm = 1in.) 

 

 

ANALYSIS OF RESULTS AND DISCUSSION 

 

In Fig. 8, the experimentally observed and numerically predicted angle  of specimen B104, 

measured between the horizontal and the principal compressive strain direction vector, is 

plotted as a function of the distance from the support point and the applied load level. In Fig. 

8(a) and Fig. 8(b) this aforementioned angle is determined at a height equal to 382mm (15.0 

in.) respectively 272mm (10.7 in.) from the bottom of the beam. Both height coordinates lie 

within the web of the beam. It is assumed that the direction of the principal compressive 

strain coincides with the direction of the principal compressive stress. This assumption is also 

made by other researchers [9, 24]. Secondly, it is also assumed that the principal compressive 

strain direction on the surface of the beam is the same as the principal compressive strain 

direction at the location of the shear reinforcement within the beam. The experimentally 

observed and numerically predicted angle  is compared to the minimum allowable angle 

according to EC2 [2, 13].  

 

 

 

 



De Wilder, De Roeck, and Vandewalle  2013 PCI/NBC 

14 

 

 
 

Fig. 8. Comparison between experimentally observed, numerically predicted and analytically 

calculated  [2, 13] angle  for specimen B104 as a function of the applied load and horizontal 

position at (a) 382mm (15.0 in.) and (b) 272mm (10.7 in.) from the bottom of the beam 

 

 

From both Fig 8(a)-(b), a satisfying correlation is found between the experimentally 

observed, numerically predicted and analytically calculated angle Close to the support 

point, small strain values are expected. Therefore, certain noise on the calculated angle is to 

be dealt with in that zone. Similar results were found for other specimens. Since EC2 states 

that the provided amount of shear reinforcement must be solely able to resist the applied 

shear force, refer to Eq. (1), and no significant difference between the experimentally 

observed and analytically calculated angle is found, it can be concluded that important 

shear carrying mechanisms are being overlooked in the shear strength provisions of EC2. 

Therefore, the various shear force contributions are identified for each specimen at various 

load levels based on the output of the numerical model.  

 

The numerically predicted shear stresses xy will, if integrated over the element surface on 

which they act, resist the applied shear force. The contributions of the top (refer to Fig. 2(c), 

area ranging from z=630mm to z=470mm) and bottom flanges (area ranging from z=0mm to 

z=170mm) and the web (area ranging from z=170mm to z=470mm) can thus be determined 

as a function of the applied load and distance from the support point. Fig. 9(a)-(c) show the 

results for specimen B102. Similar results were found for the other reported test specimens. 

From Fig. 9(b)-(c), it can be concluded that a significant portion of the applied shear force is 

carried in both uncracked flanges after the occurrence of diagonal cracks. This shear force 

distribution seems not to differ greatly for increasing load. 
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Fig. 9. Numerically predicted shear force contributions of top (light grey) and bottom (dark 

grey) flanges and web of specimen B102: (a) 50% of Vu,exp; (b) 80% of Vu,exp; (c) 95% of 

Vu,exp; (d) crack-based free-body (CBFB) diagram of specimen B102 with identified shear 

force contributions 

 

 

Fig. 9(d) depicts a crack-based free-body (CBFB) diagram of specimen B102. It is assumed 

that only the shear reinforcement crossing the critical shear crack (i.e. the crack where failure 

is initiated) as well as the identified shear forces carried  in both flanges contribute to the 

overall shear force equilibrium. The influence of aggregate interlock and dowel action is not 

taken into account. Since high strength concrete, leading to relatively smooth crack surfaces, 

is used and relatively large crack openings occur near failure, the possibility of generating 

shear stresses on the crack face is severely limited. Neglecting dowel action is justified since 

the 7-wire strands used for each specimen are characterized by a low transversal stiffness.  

 

From Fig. 9(d), it can be seen that six stirrups cross the crack opening of specimen B102. 

Using the material properties reported in Table 2 and assuming that the stress in each stirrup 

reaches the ultimate tensile strength, a total of 107.9kN (24.3 kip) (i.e. 33.5% of the 

experimentally observed failure load of specimen B102). From Fig. 9(b)-(c), it can be seen 

that approximately 32% and 31% of the applied shear force is carried in the upper 

respectively lower uncracked flange. It can be concluded that a good prediction of the actual 

shear capacity is obtained if the shear force contributions found in the upper and lower 

flanges are taken into account. 
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CONCLUSIONS 

 

This paper presents the results of six prestressed concrete I-shaped beams subjected to a four-

point bending test until failure. During four of the six tests, two stereo-vision digital image 

correlation (DIC) systems were used to continuously measure full-field displacements and 

deformations. The experimental data were used to validate nonlinear finite element models 

constructed within the commercially available software package ANSYS v14. A good 

correlation was found between the experimentally observed and numerically predicted values 

concerning failure load, failure mode and displacements. Based on the numerical output, it 

was found that the analytical model which forms the basis for the shear strength provisions 

found in EC2, does not capture the actual structural behaviour of the reported test specimens. 

Therefore, an investigation of the shear carrying mechanisms is made as a function of the 

applied load and distance from the support point. It was found that a significant portion of the 

applied load is carried in the top and bottom flanges. If these shear force contributions are 

taken into account, better analytical predictions of the shear capacity are found.   

 

 

REFERENCES
 

1. Ritter, W., Die Bauweise Hennebique. Schweizerische Bauzeitung, 1899. 33: p. 41-

61. 

2. CEN, Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules 

for buildings, 2004, NBN: Brussels. p. 255. 

3. ACI, ACI 318-11 Biulding Code Requirements for Structural Concrete and 

Commentary, 2011, American Concrete Insitute: Farmington Hills, Mich. (USA). p. 

503. 

4. CSA, CSA A23.3 Design of Concrete Structures (CSA A23.3-04), 2004, Canadian 

Standards Association: Mississauga p. 230. 

5. Schlaich, J., K. Schafer, and M. Jennewein, Toward a Consistent Design of Structural 

Concrete. Journal Prestressed Concrete Institute, 1987. 32(3): p. 74-150. 

6. Muttoni, A., J. Schwartz, and B. Thurlimann, Design of Concrete Structures with 

Stress Fields. 1997: Birkhaüser/Springer. 145pp. 

7. Muttoni, A. and M.F. Ruiz, Shear strength of members without transverse 

reinforcement as function of critical shear crack width. Aci Structural Journal, 2008. 

105(2): p. 163-172. 

8. Ruiz, M.F. and A. Muttoni, Applications of Critical Shear Crack Theory to Punching 

of Reinforced Concrete Slabs with Transverse Reinforcement. Aci Structural Journal, 

2009. 106(4): p. 485-494. 

9. Vecchio, F.J. and M.P. Collins, The Modified Compression-Field Theory for 

Reinforced-Concrete Elements Subjected to Shear. Journal of the American Concrete 

Institute, 1986. 83(2): p. 219-231. 

10. Vecchio, F.J., Disturbed stress field model for reinforced concrete: Implementation. 

Journal of Structural Engineering-Asce, 2001. 127(1): p. 12-20. 

11. Pang, X.B.D. and T.T.C. Hsu, Fixed angle softened truss model for reinforced 

concrete. Aci Structural Journal, 1996. 93(2): p. 197-207. 



De Wilder, De Roeck, and Vandewalle  2013 PCI/NBC 

17 

 

12. fib, Shear and punching shear in RC and FRC elements: Workshop 15-16 October 

2010, Salò (Italy), in fib Technical Report, V.M. Sigrist, F.; Plizzari, G.; Foster, S., 

Editor 2010, fib: Lausanne. p. 262. 

13. NBN, NBN EN 1992-1-1 ANB in Eurocode 2: Ontwerp en berekening van 

betonconstructies - Deel 1-1: Algemene regels en regels voor gebouwen (in Dutch) - 

National Application Document2010, NBN National Bureau for Normalisation: 

Brussels. p. 32 pp. 

14. Cooreman, S., et al., Identification of the mechanical material parameters through 

inverse modelling. Emerging Technologies in Non-Destructive Testing, 2008: p. 337-

342. 

15. Cooreman, S., et al., Elasto-plastic material parameter identification by inverse 

methods: Calculation of the sensitivity matrix. International Journal of Solids and 

Structures, 2007. 44(13): p. 4329-4341. 

16. Sas, G., et al., Photographic strain monitoring during full-scale failure testing of 

Ornskoldsvik bridge. Structural Health Monitoring-an International Journal, 2012. 

11(4): p. 489-498. 

17. Ivanov, D., et al., Strain mapping analysis of textile composites. Optics and Lasers in 

Engineering, 2009. 47(3-4): p. 360-370. 

18. Lecompte, D.C., S.; Coppieters, S.; Vantomme, J.; Sol, H.; Debruyne, D., Parameter 

identification for anisotropic plasticity model using digital image correlation: 

Comparison between uni-axial and bi-axial tensile testing. European Journal of 

Computational Mechanics, 2009. 18: p. 393-418. 

19. Van Paepegem, W., et al., Study of the deformation characteristics of window 

security film by digital image correlation techniques. Optics and Lasers in 

Engineering, 2009. 47(3-4): p. 390-397. 

20. Lava, P., et al., Assessment of measuring errors in DIC using deformation fields 

generated by plastic FEA. Optics and Lasers in Engineering, 2009. 47(7-8): p. 747-

753. 

21. De Wilder, K., et al., Analysis of the structural behaviour of shear-critical and 

reinforced concrete beams using digital image correlation, in 5th International 

Conference on Structural Engineering, Mechanics and Computations (SEMC2013), 

A. Zingoni, Editor 2013, Balkema: Cape Town, South Africa. 

22. Lava, P., S. Cooreman, and D. Debruyne, Study of systematic errors in strain fields 

obtained via DIC using heterogeneous deformation generated by plastic FEA. Optics 

and Lasers in Engineering, 2010. 48(4): p. 457-468. 

23. Willam, K. and E. Warnke, Constitutive model for the triaxial behavior of concrete, 

in International Association for Bridge and Structural Engineering1975, ISMES: 

Bergamo, Italy. p. 174-204. 

24. Hsu, T., Unified Theory of Reinforced Concrete. 1993, Boca Raton, FL, USA: CRC 

Press. 

 

 


